Other Interneurons (other + interneuron)

Distribution by Scientific Domains


Selected Abstracts


Enhanced synaptic excitation,inhibition ratio in hippocampal interneurons of rats with temporal lobe epilepsy

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2007
F. Stief
Abstract A common feature of all epileptic syndromes is the repetitive occurrence of pathological patterns of synchronous neuronal activity, usually combined with increased neuronal discharge rates. Inhibitory interneurons of the hippocampal formation control both neuronal synchronization as well as the global level of activity and are therefore of crucial importance for epilepsy. Recent evidence suggests that changes in synaptic inhibition during temporal lobe epilepsy are rather specific, resulting from selective death or alteration of interneurons in specific hippocampal layers. Hence, epilepsy-induced changes have to be analysed separately for different types of interneurons. Here, we focused on GABAergic neurons located at the border between stratum radiatum and stratum lacunosum-moleculare of hippocampal area CA1 (SRL interneurons), which are included in feedforward inhibitory circuits. In chronically epileptic rats at 6,8 months after pilocarpine-induced status epilepticus, frequencies of spontaneous and miniature inhibitory postsynaptic currents were reduced, yielding an almost three-fold increase in excitation,inhibition ratio. Consistently, action potential frequency of SRL interneurons was about two-fold enhanced. Morphological alterations of the interneurons indicate that these functional changes were accompanied by remodelling of the local network, probably resulting in a loss of functional inhibitory synapses without conceivable cell death. Our data indicate a strong increase in activity of interneurons in dendritic layers of the chronically epileptic CA1 region. This alteration may enhance feedforward inhibition and rhythmogenesis and , together with specific changes in other interneurons , contribute to seizure susceptibility and pathological synchronization. [source]


High level of mGluR7 in the presynaptic active zones of select populations of GABAergic terminals innervating interneurons in the rat hippocampus

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2003
Peter Somogyi
Abstract The release of neurotransmitters is modulated by presynaptic metabotropic glutamate receptors (mGluRs), which show a highly selective expression and subcellular location in glutamatergic terminals in the hippocampus. Using immunocytochemistry, we investigated whether one of the receptors, mGluR7, whose level of expression is governed by the postsynaptic target, was present in GABAergic terminals and whether such terminals targeted particular cells. A total of 165 interneuron dendritic profiles receiving 466 synapses (82% mGluR7a-positive) were analysed. The presynaptic active zones of most GAD-(77%) or GABA-positive (94%) synaptic boutons on interneurons innervated by mGluR7a-enriched glutamatergic terminals (mGluR7a-decorated) were immunopositive for mGluR7a. GABAergic terminals on pyramidal cells and most other interneurons in str. oriens were mGluR7a-immunonegative. The mGluR7a-decorated cells were mostly somatostatin- and mGluR1,-immunopositive neurons in str. oriens and the alveus. Their GABAergic input mainly originated from VIP-positive terminals, 90% of which expressed high levels of mGluR7a in the presynaptic active zone. Parvalbumin-positive synaptic terminals were rare on mGluR7a-decorated cells, but on these neurons 73% of them were mGluR7a-immunopositive. Some type II synapses innervating interneurons were immunopositive for mGluR7b, as were some type I synapses. Because not all target cells of VIP-positive neurons are known it has not been possible to determine whether mGluR7 is expressed in a target-cell-specific manner in the terminals of single GABAergic cells. The activation of mGluR7 may decrease GABA release to mGluR7-decorated cells at times of high pyramidal cell activity, which elevates extracellular glutamate levels. Alternatively, the presynaptic receptor may be activated by as yet unidentified endogenous ligands released by the GABAergic terminals or the postsynaptic dendrites. [source]


Mu opioid receptors are in discrete hippocampal interneuron subpopulations

HIPPOCAMPUS, Issue 2 2002
Carrie T. Drake
Abstract In the rat hippocampal formation, application of mu opioid receptor (MOR) agonists disinhibits principal cells, promoting excitation-dependent processes such as epileptogenesis and long-term potentiation. However, the precise location of MORs in particular inhibitory circuits, has not been determined, and the roles of MORs in endogenous functioning are unclear. To address these issues, the distribution of MOR-like immunoreactivity (-li) was examined in several populations of inhibitory hippocampal neurons in the CA1 region using light and electron microscopy. We found that MOR-li was present in many parvalbumin-containing basket cells, but absent from cholecystokinin-labeled basket cells. MOR-li was also commonly in interneurons containing somatostatin-li or neuropeptide Y-li that resembled the "oriens,lacunosum-moleculare" (O-LM) interneurons innervating pyramidal cell distal dendrites. Finally, MOR-li was in some vasoactive intestinal peptide- or calretinin-containing profiles resembling interneurons that primarily innervate other interneurons. These findings indicate that MOR-containing neurons form a neurochemically and functionally heterogeneous subset of hippocampal GABAergic neurons. MORs are most frequently on interneurons that are specialized to inhibit pyramidal cells, and are on a limited number of interneurons that target other interneurons. Moreover, the distribution of MORs to different neuronal types in several laminae, some relatively far from endogenous opioids, suggests normal functional roles that are different from the actions seen with exogenous agonists such as morphine. Hippocampus 2002;12:119,136. © 2002 Wiley-Liss, Inc. [source]


Synaptic connections of cholinergic antennal lobe relay neurons innervating the lateral horn neuropile in the brain of Drosophila melanogaster

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2003
Kouji Yasuyama
Abstract Presumed cholinergic projection neurons (PNs) in the brain of the fruit fly Drosophila melanogaster, immunoreactive to choline acetyltransferase (ChAT), convey olfactory information between the primary sensory antennal lobe neuropile and the mushroom body calyces, and finally terminate in the lateral horn (LH) neuropile. The texture and synaptic connections of ChAT PNs in the LH and, comparatively, in the smaller mushroom body calyces were investigated by immuno light and electron microscopy. The ChAT PN fibers of the massive inner antennocerebral tract (iACT) extend into all portions of the LH, distributing in a nonrandom fashion. Immunoreactive boutons accumulate in the lateral margins of the LH, whereas the more proximal LH exhibits less intense immunolabeling. Boutons with divergent presynaptic sites, unlabeled as well as ChAT-immunoreactive, appear to be the preponderant mode of synaptic input throughout the LH. Synapses of ChAT-labeled fibers appear predominantly as divergent synaptic boutons (diameters 1,3 ,m), connected to unlabeled postsynaptic profiles, or alternatively as a minority of tiny postsynaptic spines (diameters 0.05,0.5 ,m) among unlabeled profiles. Together these spines encircle unidentified presynaptic boutons of interneurons which occupy large areas of the LH. Thus, synaptic circuits in the LH differ profoundly from those of the PNs in the mushroom body calyx, where ChAT spines have not been encountered. Synaptic contacts between LH ChAT elements were not observed. The synaptic LH neuropile may serve as an output area for terminals of the ChAT PNs, their presynaptic boutons providing input to noncholinergic relay neurons. The significance of the postsynaptic neurites of the ChAT PNs is discussed; either local or other interneurons might connect the ChAT PNs within the LH, or PNs might receive inputs arising from outside the LH. J. Comp. Neurol. 466:299,315, 2003. © 2003 Wiley-Liss, Inc. [source]


GABAB receptor modulation of excitatory and inhibitory synaptic transmission onto rat CA3 hippocampal interneurons

THE JOURNAL OF PHYSIOLOGY, Issue 2 2003
Saobo Lei
Hippocampal stratum radiatum inhibitory interneurons receive glutamatergic excitatory innervation via the recurrent collateral fibers of CA3 pyramidal neurons and GABAergic inhibition from other interneurons. We examined both presynaptic- and postsynaptic-GABAB receptor-mediated responses at both synapse types. Postsynaptic GABAB receptor-mediated responses were absent in recordings from young (P16-18) but present in recordings from older animals (P30) suggesting developmental regulation. In young animals, the GABAB receptor agonist, baclofen, inhibited the amplitude of evoked EPSCs and IPSCs, an effect blocked by prior application of the selective antagonist CGP55845. Baclofen enhanced the paired-pulse ratio and coefficient of variation of evoked EPSCs and IPSCs, consistent with a presynaptic mechanism of regulation. In addition, baclofen reduced the frequency of miniature IPSCs but not mEPSCs. However, baclofen reduced the frequency of KCl-induced mEPSCs; an effect blocked by Cd2+, implicating presynaptic voltage-gated Ca2+ channels as a target for baclofen modulation. In contrast, although Cd2+ prevented the KCl-induced increase in mIPSC frequency, it failed to block baclofen's reduction of mIPSC frequency. Whereas N- and P/Q-types of Ca2+ channels contributed equally to GABAB receptor-mediated inhibition of EPSCs, more P/Q-type Ca2+ channels were involved in GABAB receptor-mediated inhibition of IPSCs. Finally, baclofen blocked the frequency-dependent depression of EPSCs and IPSCs, but was less effective at blocking frequency-dependent facilitation of EPSCs. Our results demonstrate that presynaptic GABAB receptors are expressed on the terminals of both excitatory and inhibitory synapses onto CA3 interneurons and that their activation modulates essential components of the release process underlying transmission at these two synapse types. [source]