Osteoclasts

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Osteoclasts

  • human osteoclast
  • mature osteoclast
  • multinucleated osteoclast

  • Terms modified by Osteoclasts

  • osteoclast activation
  • osteoclast activity
  • osteoclast apoptosi
  • osteoclast development
  • osteoclast differentiation
  • osteoclast formation
  • osteoclast function
  • osteoclast number
  • osteoclast precursor
  • osteoclast precursor cell
  • osteoclast progenitor
  • osteoclast recruitment
  • osteoclast surface

  • Selected Abstracts


    Differential Contribution of Osteoclast- and Osteoblast-Lineage Cells to CpG-Oligodeoxynucleotide (CpG-ODN) Modulation of Osteoclastogenesis,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2005
    Alla Amcheslavsky
    Abstract CpG-ODNs modulate osteoclast differentiation through Toll-like receptor 9 (TLR9). Using TLR9-deficient mice, we found that activation of TLR9 on both osteoclast precursors and osteoblasts mediate the osteoclastogenic effect of CpG-ODN. Osteoclastic TLR9 is more important for this activity. Introduction: Bacterial infections cause pathological bone loss by accelerating differentiation and activation of the osteoclast. A variety of bacteria-derived molecules have been shown to enhance osteoclast differentiation through activation of Toll-like receptors (TLRs). We have shown that CpG-oligodeoxynucleotides (CpG-ODNs), mimicking bacterial DNA and exerting their cellular activities through TLR9, modulate osteoclast differentiation in a complex manner: the ODNs inhibit the activity of the physiological osteoclast differentiation factor RANKL in early osteoclast precursors (OCPs) but markedly stimulate osteoclastogenesis in cells primed by RANKL. Materials and Methods: Osteoclast precursors and osteoblasts from TLR9-deficient (TLR9,/,) and wildtype (TLR9+/+) mice were used for in vitro analyses of osteoclast differentiation and modulation of signal transduction and gene expression. Results: As expected CpG-ODN did not exert any activity in cells derived from TLR9,/,mice; these cells, however, responded in a normal manner to other stimuli. Using bone marrow/osteoblasts co-cultures from all possible combinations of TLR9,/, and TLR9+/+ mice-derived cells, we showed that TLR9 in the two lineages is required for CpG-ODN induction of osteoclastogenesis. Conclusions: CpG-ODN modulates osteoclastogenesis in a TLR9-dependent manner. Activation of TLR9 in bone marrow-derived osteoclasts precursors is more crucial to induction of osteoclastogenesis than activation of the osteoblastic TLR9. [source]


    Effect of Osteoblast-Targeted Expression of Bcl-2 in Bone: Differential Response in Male and Female Mice,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2005
    Alexander G Pantschenko
    Abstract Transgenic mice (Col2.3Bcl-2) with osteoblast-targeted human Bcl-2 expression were established. Phenotypically, these mice were smaller than their wildtype littermates and showed differential effects of the transgene on bone parameters and osteoblast activity dependent on sex. The net effect was an abrogation of sex differences normally observed in wildtype mice and an inhibition of bone loss with age. Ex vivo osteoblast cultures showed that the transgene had no effect on osteoblast proliferation, but decreased bone formation. Estrogen was shown to stimulate endogenous Bcl-2 message levels. These studies suggest a link between Bcl-2 and sex regulation of bone development and age-related bone loss. Introduction: Whereas Bcl-2 has been shown to be an important regulator of apoptosis in development, differentiation, and disease, its role in bone homeostasis and development is not well understood. We have previously showed that the induction of glucocorticoid-induced apoptosis occurred through a dose-dependent decrease in Bcl-2. Estrogen prevented glucocorticoid-induced osteoblast apoptosis in vivo and in vitro by preventing the decrease in Bcl-2 in osteoblasts. Therefore, Bcl-2 may be an important regulator of bone growth through mechanisms that control osteoblast longevity and function. Materials and Methods: Col2.3Bcl-2 mice were developed carrying a 2.3-kb region of the type I collagen promoter driving 1.8 kb of human Bcl-2 (hBcl-2). Tissue specific expression of hBcl-2 in immunoassays validated the transgenic animal model. Histomorphometry and DXA were performed. Proliferation, mineralization, and glucocorticoid-induced apoptosis were examined in ex vivo cultures of osteoblasts. The effect of estrogen on mouse Bcl-2 in ex vivo osteoblast cultures was assayed by RT-PCR and Q-PCR. Results and Conclusions: Two Col2.3Bcl-2 (tg/+) founder lines were established and appeared normal except that they were smaller than their nontransgenic wildtype (+/+) littermates at 1, 2, and 6 months of age, with the greatest differences at 2 months. Immunohistochemistry showed hBcl-2 in osteoblasts at the growth plate and cortical surfaces. Nontransgenic littermates were negative. Western blots revealed hBcl-2 only in type I collagen-expressing tissues. Histomorphometry of 2-month-old mice showed a significant decrease in tg/+ calvaria width with no significant differences in femoral trabecular area or cortical width compared with +/+. However, tg/+ males had significantly more trabecular bone than tg/+ females. Female +/+ mice showed increased bone turnover with elevated osteoblast and osteoclast parameters compared with +/+ males. Col2.3Bcl-2 mice did not show such significant differences between sexes. Male tg/+ mice had a 76.5 ± 1.5% increase in ObS/BS with no significant differences in bone formation rate (BFR) or mineral apposition rate (MAR) compared with male +/+ mice. Transgenic females had a significant 48.4 ± 0.1% and 20.1 ± 5.8% decrease in BFR and MAR, respectively, compared with +/+ females. Osteoclast and osteocyte parameters were unchanged. By 6 months, femurs from female and male +/+ mice had lost a significant amount of their percent of trabecular bone compared with 2-month-old mice. There was little to no change in femoral bone in the tg/+ mice with age. Ex vivo cultures of osteoblasts from +/+ and Col2.3Bcl-2 mice showed a decrease in mineralization, no effect on proliferation, and an inhibition of glucocorticoid-induced apoptosis in Col2.3Bcl-2 cultures. Estrogen was shown to increase mouse Bcl-2 transcript levels in osteoblast cultures of wildtype mice, supporting a role for Bcl-2 in the sex-related differences in bone phenotype regulated by estrogen. Therefore, Bcl-2 differentially affected bone phenotype in male and female transgenic mice, altered bone cell activity associated with sex-related differences, and decreased bone formation, suggesting that apoptosis is necessary for mineralization. In addition, Bcl-2 targeted to mature osteoblasts seemed to delay bone development, producing a smaller transgenic mouse compared with wildtype littermates. These studies suggest that expression of Bcl-2 in osteoblasts is important in regulating bone mass in development and in the normal aging process of bone. [source]


    Osteoclastogenesis, Bone Resorption, and Osteoclast-Based Therapeutics

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2003
    Mone Zaidi
    Abstract Over the past decade, advances in molecular tools, stem cell differentiation, osteoclast and osteoblast signaling mechanisms, and genetically manipulated mice models have resulted in major breakthroughs in understanding osteoclast biology. This review focuses on key advances in our understanding of molecular mechanisms underlying the formation, function, and survival of osteoclasts. These include key signals mediating osteoclast differentiation, including PU.1, RANK, CSF-1/c-fms, and src, and key specializations of the osteoclast including HCl secretion driven by H+ -ATPase and the secretion of collagenolytic enzymes including cathepsin K and matrix metalloproteinases (MMPs). These pathways and highly expressed proteins provide targets for specific therapies to modify bone degradation. The main outstanding issues, basic and translational, will be considered in relation to the osteoclast as a target for antiresorptive therapies. [source]


    Leupaxin Is a Critical Adaptor Protein in the Adhesion Zone of the Osteoclast,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2003
    Anandarup Gupta
    Abstract Leupaxin is a cytoskeleton adaptor protein that was first identified in human macrophages and was found to share homology with the focal adhesion protein, paxillin. Leupaxin possesses several protein-binding domains that have been implicated in targeting proteins such as focal adhesion kinase (pp125FAK) to focal adhesions. Leupaxin can be detected in monocytes and osteoclasts, both cells of hematopoietic origin. We have identified leupaxin to be a component of the osteoclast podosomal signaling complex. We have found that leupaxin in murine osteoclasts is associated with both PYK2 and pp125FAK in the osteoclast. Treatment of osteoclasts with TNF-, and soluble osteopontin were found to stimulate tyrosine phosphorylation of both leupaxin and leupaxin-associated PYK2. Leupaxin was found to co-immunoprecipitate with the protein tyrosine phosphatase PTP-PEST. The cellular distribution of leupaxin, PYK2, and protein tyrosine phosphorylation-PEST co-localized at or near the osteoclast podosomal complex. Leupaxin was also found to associate with the ARF-GTPase-activating protein, paxillin kinase linker p95PKL, thereby providing a link to regulators of cytoskeletal dynamics in the osteoclast. Overexpression of leupaxin by transduction into osteoclasts evoked numerous cytoplasmic projections at the leading edge of the cell, resembling a motile phenotype. Finally, in vitro inhibition of leupaxin expression in the osteoclast led to a decrease in resorptive capacity. Our data suggest that leupaxin may be a critical nucleating component of the osteoclast podosomal signaling complex. [source]


    Transcriptionally active nuclei are selective in mature multinucleated osteoclasts

    GENES TO CELLS, Issue 10 2010
    Min-Young Youn
    Multinucleation is indispensable for the bone-resorbing activity of mature osteoclasts. Although multinucleation is evident in mature osteoclasts and certain other cell types, putative regulatory networks among nuclei remain poorly characterized. To address this issue, transcriptional activity of each nucleus in a multinucleated osteoclast was assessed by detecting the distributions of nuclear proteins by immunocytochemistry and primary transcripts by RNA FISH. Patterns of epigenetic histone markers governing transcription as well as localization of tested nuclear receptor proteins appeared indistinguishable among nuclei in differentiated Raw264 cells and mouse mature osteoclasts. However, RNAPII-Ser5P/2P and NFATc1 proteins were selectively distributed in certain nuclei in the same cell. Similarly, the distributions of primary transcripts for osteoclast-specific genes (Nfatc1, Ctsk and Acp5) as well as a housekeeping gene (beta-tubulin) were limited in certain nuclei within individual cells. By fusing two Raw264 cell lines that stably expressed ZsGreen-NLS and DsRed-NLS proteins, transmission of nuclear proteins across all of the nuclei in a cell could be observed, presumably through the shared cytoplasm. Taken together, we conclude that although nuclear proteins are diffusible among nuclei, only certain nuclei within a multinucleated osteoclast are transcriptionally active. [source]


    Stromal cells promote bone invasion by suppressing bone formation in ameloblastoma

    HISTOPATHOLOGY, Issue 4 2008
    G S A Sathi
    Aims:, To study the stromal variation and role of stromal,tumour cell interaction in impaired bone formation as well as enhanced bone resorption in ameloblastoma. Methods and results:, Four types of stroma were observed histologically; fibrous, desmoplastic, myxoid and myxoid with hyalinization. Osteoblast and osteoclast were counted using haematoxylin and eosin sections and immunohistochemistry with CD68. After histomorphometric analysis, only fibrous and myxoid types of stroma were distinctly identified. Secreted frizzled-related peptide (sFRP)-2, transforming growth factor-beta 1 and receptor activator of nuclear factor-,B ligand (RANKL) revealed strong expression in myxoid type compared with the normal stroma. Bone morphogenetic protein (BMP)-2 was negative in myxoid type, but positive in normal stroma. Fibrous-type stroma showed weak expression of all antigens except RANKL compared with myxoid type. Conclusions:, The results suggest that stroma does not act only in bone resorption, but also in the suppression of new bone formation. sFRP-2 is the main factor for impaired bone formation. The expression of markers related to osteoclastogenesis and suppression of osteoblast formation is higher in myxoid-type than in fibrous-type stroma. Tumour cells create a favourable environment for impaired bone formation by secreting sFRP-2 as well as bone resorption by secreting RANKL and interleukin-6. [source]


    The pivotal role of the alternative NF-,B pathway in maintenance of basal bone homeostasis and osteoclastogenesis,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2010
    Niroshani S Soysa
    Abstract The alternative NF-,B pathway consists predominantly of NF-,B-inducing kinase (NIK), I,B kinase , (IKK,), p100/p52, and RelB. The hallmark of the alternative NF-,B signaling is the processing of p100 into p52 through NIK, thus allowing the binding of p52 and RelB. The physiologic relevance of alternative NF-,B activation in bone biology, however, is not well understood. To elucidate the role of the alternative pathway in bone homeostasis, we first analyzed alymphoplasic (aly/aly) mice, which have a defective NIK and are unable to process p100, resulting in the absence of p52. We observed increased bone mineral density (BMD) and bone volume, indicating an osteopetrotic phenotype. These mice also have a significant defect in RANKL-induced osteoclastogenesis in vitro and in vivo. NF-,B DNA-binding assays revealed reduced activity of RelA, RelB, and p50 and no binding activity of p52 in aly/aly osteoclast nuclear extracts after RANKL stimulation. To determine the role of p100 itself without the influence of a concomitant lack of p52, we used p100,/, mice, which specifically lack the p100 inhibitor but still express p52. p100,/, mice have an osteopenic phenotype owing to the increased osteoclast and decreased osteoblast numbers that was rescued by the deletion of one allele of the relB gene. Deletion of both allele of relB resulted in a significantly increased bone mass owing to decreased osteoclast activity and increased osteoblast numbers compared with wild-type (WT) controls, revealing a hitherto unknown role for RelB in bone formation. Our data suggest a pivotal role of the alternative NF-,B pathway, especially of the inhibitory role of p100, in both basal and stimulated osteoclastogenesis and the importance of RelB in both bone formation and resorption. © 2010 American Society for Bone and Mineral Research [source]


    Dendritic Cells at the Osteo-Immune Interface: Implications for Inflammation-Induced Bone Loss,,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2007
    Mawadda Alnaeeli
    Abstract Within the past decade, the critical roles of T cells and T cell,mediated immunity in inflammation-induced osteoclastogenesis and subsequent bone loss have been extensively studied, thereby establishing the new paradigm of osteoimmunology. Therefore, dendritic cells (DCs), the most potent antigen-presenting cells, responsible for activation of naïve T cells and orchestration of the immune response, became critically situated at the osteo-immune interface. Today, emerging new evidence suggests that DC may be directly involved in inflammation-induced osteoclastogenesis and bone loss, by acting as osteoclast (OC) precursors that can further develop into DC-derived OCs (DDOC) under inflammatory conditions. These findings have tremendous implications, because in addition to DC's important roles in regulating innate and adaptive immunity, a direct contribution by these cells to inflammation-induced bone loss may provide a promising therapeutic target not only for controlling inflammation but also for modulating bone destruction. [source]


    Thyroid-Stimulating Hormone Restores Bone Volume, Microarchitecture, and Strength in Aged Ovariectomized Rats*,,§

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2007
    T Kuber Sampath PhD
    Abstract We show the systemic administration of low levels of TSH increases bone volume and improves bone microarchitecture and strength in aged OVX rats. TSH's actions are mediated by its inhibitory effects on RANKL-induced osteoclast formation and bone resorption coupled with stimulatory effects on osteoblast differentiation and bone formation, suggesting TSH directly affects bone remodeling in vivo. Introduction: Thyroid-stimulating hormone (TSH) receptor haploinsufficient mice with normal circulating thyroid hormone levels have reduced bone mass, suggesting that TSH directly affects bone remodeling. We examined whether systemic TSH administration restored bone volume in aged ovariectomized (OVX) rats and influenced osteoclast formation and osteoblast differentiation in vitro. Materials and Methods: Sprague-Dawley rats were OVX at 6 months, and TSH therapy was started immediately after surgery (prevention mode; n = 80) or 7 mo later (restoration mode; n = 152). Hind limbs and lumbar spine BMD was measured at 2- or 4-wk intervals in vivo and ex vivo on termination at 8,16 wk. Long bones were subjected to ,CT, histomorphometric, and biomechanical analyses. The direct effect of TSH was examined in osteoclast and osteoblast progenitor cultures and established rat osteosarcoma-derived osteoblastic cells. Data were analyzed by ANOVA Dunnett test. Results: In the prevention mode, low doses (0.1 and 0.3 ,g) of native rat TSH prevented the progressive bone loss, and importantly, did not increase serum triiodothyroxine (T3) and thyroxine (T4) levels in aged OVX rats. In restoration mode, animals receiving 0.1 and 0.3 ,g TSH had increased BMD (10,11%), trabecular bone volume (100,130%), trabecular number (25,40%), trabecular thickness (45,60%), cortical thickness (5,16%), mineral apposition and bone formation rate (200,300%), and enhanced mechanical strength of the femur (51,60%) compared with control OVX rats. In vitro studies suggest that TSH's action is mediated by its inhibitory effects on RANKL-induced osteoclast formation, as shown in hematopoietic stem cells cultivated from TSH-treated OVX rats. TSH also stimulates osteoblast differentiation, as shown by effects on alkaline phosphatase activity, osteocalcin expression, and mineralization rate. Conclusions: These results show for the first time that systemically administered TSH prevents bone loss and restores bone mass in aged OVX rats through both antiresorptive and anabolic effects on bone remodeling. [source]


    Differential Contribution of Osteoclast- and Osteoblast-Lineage Cells to CpG-Oligodeoxynucleotide (CpG-ODN) Modulation of Osteoclastogenesis,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2005
    Alla Amcheslavsky
    Abstract CpG-ODNs modulate osteoclast differentiation through Toll-like receptor 9 (TLR9). Using TLR9-deficient mice, we found that activation of TLR9 on both osteoclast precursors and osteoblasts mediate the osteoclastogenic effect of CpG-ODN. Osteoclastic TLR9 is more important for this activity. Introduction: Bacterial infections cause pathological bone loss by accelerating differentiation and activation of the osteoclast. A variety of bacteria-derived molecules have been shown to enhance osteoclast differentiation through activation of Toll-like receptors (TLRs). We have shown that CpG-oligodeoxynucleotides (CpG-ODNs), mimicking bacterial DNA and exerting their cellular activities through TLR9, modulate osteoclast differentiation in a complex manner: the ODNs inhibit the activity of the physiological osteoclast differentiation factor RANKL in early osteoclast precursors (OCPs) but markedly stimulate osteoclastogenesis in cells primed by RANKL. Materials and Methods: Osteoclast precursors and osteoblasts from TLR9-deficient (TLR9,/,) and wildtype (TLR9+/+) mice were used for in vitro analyses of osteoclast differentiation and modulation of signal transduction and gene expression. Results: As expected CpG-ODN did not exert any activity in cells derived from TLR9,/,mice; these cells, however, responded in a normal manner to other stimuli. Using bone marrow/osteoblasts co-cultures from all possible combinations of TLR9,/, and TLR9+/+ mice-derived cells, we showed that TLR9 in the two lineages is required for CpG-ODN induction of osteoclastogenesis. Conclusions: CpG-ODN modulates osteoclastogenesis in a TLR9-dependent manner. Activation of TLR9 in bone marrow-derived osteoclasts precursors is more crucial to induction of osteoclastogenesis than activation of the osteoblastic TLR9. [source]


    Osteoclastogenesis, Bone Resorption, and Osteoclast-Based Therapeutics

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2003
    Mone Zaidi
    Abstract Over the past decade, advances in molecular tools, stem cell differentiation, osteoclast and osteoblast signaling mechanisms, and genetically manipulated mice models have resulted in major breakthroughs in understanding osteoclast biology. This review focuses on key advances in our understanding of molecular mechanisms underlying the formation, function, and survival of osteoclasts. These include key signals mediating osteoclast differentiation, including PU.1, RANK, CSF-1/c-fms, and src, and key specializations of the osteoclast including HCl secretion driven by H+ -ATPase and the secretion of collagenolytic enzymes including cathepsin K and matrix metalloproteinases (MMPs). These pathways and highly expressed proteins provide targets for specific therapies to modify bone degradation. The main outstanding issues, basic and translational, will be considered in relation to the osteoclast as a target for antiresorptive therapies. [source]


    Leupaxin Is a Critical Adaptor Protein in the Adhesion Zone of the Osteoclast,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2003
    Anandarup Gupta
    Abstract Leupaxin is a cytoskeleton adaptor protein that was first identified in human macrophages and was found to share homology with the focal adhesion protein, paxillin. Leupaxin possesses several protein-binding domains that have been implicated in targeting proteins such as focal adhesion kinase (pp125FAK) to focal adhesions. Leupaxin can be detected in monocytes and osteoclasts, both cells of hematopoietic origin. We have identified leupaxin to be a component of the osteoclast podosomal signaling complex. We have found that leupaxin in murine osteoclasts is associated with both PYK2 and pp125FAK in the osteoclast. Treatment of osteoclasts with TNF-, and soluble osteopontin were found to stimulate tyrosine phosphorylation of both leupaxin and leupaxin-associated PYK2. Leupaxin was found to co-immunoprecipitate with the protein tyrosine phosphatase PTP-PEST. The cellular distribution of leupaxin, PYK2, and protein tyrosine phosphorylation-PEST co-localized at or near the osteoclast podosomal complex. Leupaxin was also found to associate with the ARF-GTPase-activating protein, paxillin kinase linker p95PKL, thereby providing a link to regulators of cytoskeletal dynamics in the osteoclast. Overexpression of leupaxin by transduction into osteoclasts evoked numerous cytoplasmic projections at the leading edge of the cell, resembling a motile phenotype. Finally, in vitro inhibition of leupaxin expression in the osteoclast led to a decrease in resorptive capacity. Our data suggest that leupaxin may be a critical nucleating component of the osteoclast podosomal signaling complex. [source]


    Optimized transfection of diced siRNA into mature primary human osteoclasts: Inhibition of cathepsin K mediated bone resorption by siRNA

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2005
    Christina I. Selinger
    Abstract Osteoclasts are large multinucleated cells responsible for bone resorption. Bone resorption is dependent on the liberation of calcium by acid and protease destruction of the bone matrix by proteinases. The key proteinase produced by the osteoclast is cathepsin K. Targeted knock-down of cathepsin K was performed using small inhibitory RNA (siRNA). siRNA is a method that introduces short double-stranded RNA molecules that instruct the RNA-induced silencing complex (RISC) to degrade mRNA species complementary to the siRNA. Transfection of siRNA by lipid cations allows for short-term inhibition of expression of the targeted gene. We show that transfection of primary human osteoclasts with siRNA to cathepsin K reduces expression by ,60% and significantly inhibits bone resorption with a reduction of both resorption pit numbers (P,=,0.018) and resorbed area (P,=,0.013). We also show that FuGENE 6 is an effective lipid transfection reagent with which to transfect primary human osteoclasts, that does not produce off-target effects. © 2005 Wiley-Liss, Inc. [source]


    CXCL12 chemokine up-regulates bone resorption and MMP-9 release by human osteoclasts: CXCL12 levels are increased in synovial and bone tissue of rheumatoid arthritis patients

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2004
    Francesco Grassi
    Chemokines are involved in a number of inflammatory pathologies and some of them show a pivotal role in the modulation of osteoclast development. Therefore, we evaluated the role of CXCL12 chemokine on osteoclast differentiation and function and we analyzed its expression on synovial and bone tissue biopsies from rheumatoid arthritis (RA) patients. Osteoclasts were obtained by 7 days in vitro differentiation with RANKL and M-CSF of CD11b positive cells in the presence or absence of CXCL12. The total number of osteoclast was analyzed by Tartrate-resistant acid phosphatase (TRAP)-staining and bone-resorbing activity was assessed by pit assay. MMP-9 and TIMP-1 release was evaluated by ELISA assay. CXCL12 expression on biopsies from RA patients was analyzed by immunohistochemistry. Osteoclasts obtained in the presence of CXCL12 at 10 nM concentration displayed a highly significant increase in bone-resorbing activity as measured by pit resorption assay, while the total number of mature osteoclasts was not affected. The increased resorption is associated with overexpression of MMP-9. Immunostaining for CXCL12 on synovial and bone tissue biopsies from both rheumatoid arthritis (RA) and osteoarthritis (OA) samples revealed a strong increase in the expression levels under inflammatory conditions. CXCL12 chemokine showed a clear activating role on mature osteoclast by inducing bone-resorbing activity and specific MMP-9 enzymatic release. Moreover, since bone and synovial biopsies from RA patients showed an elevated CXCL12 expression, these findings may provide useful tools for achieving a full elucidation of the complex network that regulates osteoclast function in course of inflammatory diseases. J. Cell. Physiol. 199: 244,251, 2004© 2003 Wiley-Liss, Inc. [source]


    Altered osteoclast development and function in osteopontin deficient mice

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 5 2008
    Ahnders Franzén
    Abstract The role of osteopontin in bone resorption was elucidated by studies of mice with knock out of the osteopontin gene generated by a different approach compared to previous models. Thus, a targeting vector with the promoter region as well as exons 1, 2, and 3 of the osteopontin gene was replaced by a loxP-flanked Neo-TK cassette, and this cassette was eliminated through transient expression of Cre recombinase. The recombined ES cells were used to create mice lacking expression of the osteopontin gene. Tissues from these mice were subjected structural and molecular analyses including morphometry and proteomics. The bone of the null mice contained no osteopontin but showed no significant alterations with regard to other bone proteins. The bone volume was normal in young null animals but in the lower metaphysis, the volume and number of osteoclasts were increased. Notably, the volume and length of the osteoclast ruffled border was several folds lower, indicating a lower resorptive capacity. The null mice did not develop the bone loss characteristic for osteoporosis demonstrated in old wild-type female animals. This quantitative study demonstrates a bone phenotype in the osteopontin null mice of all ages. The data provides further evidence for a role of osteopontin in osteoclast activity. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:721,728, 2008 [source]


    Cross-linked N-telopeptide of type I collagen (NTx) in urine as a predictor of periprosthetic osteolysis

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 7 2006
    Thord von Schewelov
    Abstract Periprosthetic osteolysis is often nonsymptomatic and hard to visualize by conventional radiography. Cross-linked N-telopeptide of type I collagen (NTx), a marker of osteoclast mediated bone resorption, has been suggested to evaluate local particulate-induced osteolysis in patients operated on with a total hip prosthesis. Urine specimens were sampled after hip joint replacement in 160 patients. NTx was analyzed by a commercially available ELISA kit. Osteolysis was identified in the acetabulum and confirmed at operation. Using analysis of covariance to correct for differences in age, gender, and time after operation, NTx (mean SD) was 36,±,12 BCE/nM creatinine in patients with osteolysis (n,=,33) and 27,±,13 BCE/nM creatinine in patients without osteolysis (n,=,127) (p,=,0.003). Eighteen hips of 38 (47%), demonstrating an annual wear of more than 0.2 mm and an NTx value above 29 BCE/nM creatinine, had been revised due to osteolysis. The osteolysis prevalence in this group was increased 10 times (CI 4-23, p,<,0.05). Indeed, NTx release and annual wear were both associated with increased prevalence of osteolysis, however, independently of each other. NTx seems a feasible marker of periprosthetic osteolysis. A preoperative baseline NTx level is likely needed for its use as a predictor of periprosthetic osteolysis in individual cases. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 24:1342,1348, 2006 [source]


    Immunohistochemical study of receptor activator of nuclear factor kappa-B ligand (RANK-L) in human osteolytic bone tumors

    JOURNAL OF SURGICAL ONCOLOGY, Issue 3 2002
    Christopher R. Good BA
    Abstract Background and Objectives Osteolytic bone tumors produce intercellular signaling proteins that regulate bone remodeling by altering the rates of osteoclast and osteoblast differentiation and activity. This report examines osteolytic bone tumor expression of receptor activator of nuclear factor B-ligand (RANK-L), a cytokine that is arguably the most critical regulator of osteoclast differentiation and activation. Methods This prospective immunohistochemical study examined RANK-L expression in frozen tissues from sixteen surgical specimens of patients who underwent surgery for the treatment of osteolytic bone tumors between 1999 and 2000. Results RANK-L was positive in 13 of the 16 cases. Primary benign bone tumors, primary malignant bone tumors, and metastasis to bone were positive for RANK-L. Conclusions The cells in some, but not all, osteolytic tumors produce the cytokine RANK-L. Further study is necessary to determine in which specific tumors RANK-L is the cytokine responsible for increased osteoclastic activity, and to develop possible therapeutic use of RANK-L antagonists such as osteoprotegerin (OPG). J. Surg. Oncol. 2002;79:174,179. © 2002 Wiley,Liss, Inc. [source]


    Neurological aspects of osteopetrosis

    NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 2 2003
    C. G. Steward
    The osteopetroses are caused by reduced activity of osteoclasts which results in defective remodelling of bone and increased bone density. They range from a devastating neurometabolic disease, through severe malignant infantile osteopetrosis (OP) to two more benign conditions principally affecting adults [autosomal dominant OP (ADO I and II)]. In many patients the disease is caused by defects in either the proton pump [the a3 subunit of vacuolar-type H(+)-ATPase, encoded by the gene variously termed ATP6i or TCIRG1] or the ClC-7 chloride channel (ClCN7 gene). These pumps are responsible for acidifying the bone surface beneath the osteoclast. Although generally thought of as bone diseases, the most serious consequences of the osteopetroses are seen in the nervous system. Cranial nerves, blood vessels and the spinal cord are compressed by either gradual occlusion or lack of growth of skull foramina. Most patients with OP have some degree of optic atrophy and many children with severe forms of autosomal recessive OP are rendered blind; optic decompression is frequently attempted to prevent the latter. Auditory, facial and trigeminal nerves may also be affected, and hydrocephalus can develop. Stenosis of both arterial supply (internal carotid and vertebral arteries) and venous drainage may occur. The least understood form of the disease is neuronopathic OP [OP and infantile neuroaxonal dystrophy, MIM (Mendelian inheritance in man) 600329] which causes rapid neurodegeneration and death within the first year. Although characterized by the finding of widespread axonal spheroids and accumulation of ceroid lipofuscin, the biochemical basis of this disease remains unknown. The neurological complications of this disease and other variants are presented in the context of the latest classification of the disease. [source]


    Fifteen-year quest for microphthalmia-associated transcription factor target genes

    PIGMENT CELL & MELANOMA RESEARCH, Issue 1 2010
    Yann Cheli
    Summary Microphthalmia-associated transcription factor (MITF) was initially shown to play a key role in melanocyte differentiation through the direct transcriptional control of TYROSINASE, TYRP1 and DCT genes, encoding the three enzymes involved in melanin synthesis or melanogenesis. Sixteen years after the first description of MITF, more than 40 direct MITF target genes have been described. They play a key role in melanocyte, osteoclast and mast cell specific functions. Furthermore, several MITF target genes, e.g. BCL2, CDK2, CDKN1A, CDKN2A, MET and HIF1A, link MITF to general cellular processes such as growth or survival. In this review, we provide an overview of the MITF-regulated genes. We pay special attention to the MITF target genes in melanocytes and raise questions about target specificity. [source]


    Influence of lipopolysaccharide and interleukin-6 on RANKL and OPG expression and release in human periodontal ligament cells

    APMIS, Issue 10 2009
    ANNA C. KRAJEWSKI
    Recent research into periodontal disease pathology focuses on the role of receptor activator of nuclear factor-,B ligand (RANKL) and osteoprotegerin (OPG) in periodontal bone destruction processes. RANKL regulates the differentiation of osteoclast by binding to its specific receptor RANK, while OPG inhibits the differentiation of osteoclasts by binding RANKL and therefore preventing RANKL to bind RANK. The aim of the present study was to investigate the influence of Porphyromonas gingivalis lipopolysaccharide (LPS) and interleukin-6 (IL-6) on RANKL and OPG expression and release in periodontal ligament (PDL) cells. Human PDL cells were stimulated for 48 h with purified P. gingivalis LPS and IL-6. OPG and sRANKL release were assessed by using enzyme-linked immunosorbent assay technique. OPG and RANKL expression was quantitatively measured by using the real-time PCR technique. Whereas P. gingivalis LPS induced sRANKL release, expression was only slightly increased, IL-6 did not show an effect on RANKL expression or release. In conclusion the data demonstrate that stimulation of PDL cells with P. gingivalis LPS leads to an increased release of sRANKL, rather than increased RANKL expression. Through this action, P. gingivalis LPS may exert its biological effect on osteoclast formation and bone resorption. [source]


    Targeting MEK1/2 blocks osteoclast differentiation, function and cytokine secretion in multiple myeloma

    BRITISH JOURNAL OF HAEMATOLOGY, Issue 1 2007
    Iris Breitkreutz
    Summary Osteolytic bone disease in multiple myeloma (MM) is associated with upregulation of osteoclast (OCL) activity and constitutive inhibition of osteoblast function. The extracellular signal-regulated kinase 1/2 (ERK1/2) pathway mediates OCL differentiation and maturation. We hypothesized that inhibition of ERK1/2 could prevent OCL differentiation and downregulate OCL function. It was found that AZD6244, a mitogen-activated or extracellular signal-regulated protein kinase (MEK) inhibitor, blocked OCL differentiation and formation in a dose-dependent manner, evidenced by decreased ,V,3-integrin expression and tartrate-resistant acid phosphatase positive (TRAP+) cells. Functional dentine disc cultures showed inhibition of OCL-induced bone resorption by AZD6244. Major MM growth and survival factors produced by OCLs including B-cell activation factor (BAFF) and a proliferation-inducing ligand (APRIL), as well as macrophage inflammatory protein (MIP-1,), which mediates OCL differentiation and MM, were also significantly inhibited by AZD6244. In addition to ERK inhibition, NFATc1 (nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1) and c-fos were both downregulated, suggesting that AZD6244 targets a later stage of OCL differentiation. These results indicate that AZD6244 inhibits OCL differentiation, formation and bone resorption, thereby abrogating paracrine MM cell survival in the bone marrow microenvironment. The present study therefore provides a preclinical rationale for the evaluation of AZD6244 as a potential new therapy for patients with MM. [source]


    An endogenous regulator of inflammation, resolvin E1, modulates osteoclast differentiation and bone resorption

    BRITISH JOURNAL OF PHARMACOLOGY, Issue 8 2008
    B S Herrera
    Background and purpose: The inflammation-resolving lipid mediator resolvin E1 (RvE1) effectively stops inflammation-induced bone loss in vivo in experimental periodontitis. It was of interest to determine whether RvE1 has direct actions on osteoclast (OC) development and bone resorption. Experimental approach: Primary OC cultures derived from mouse bone marrow were treated with RvE1 and analysed for OC differentiation, cell survival and bone substrate resorption. Receptor binding was measured using radiolabelled RvE1. Nuclear factor (NF)-,B activation and Akt phosphorylation were determined with western blotting. Lipid mediator production was assessed with liquid chromatography tandem mass spectrometry. Key results: OC growth and resorption pit formation were markedly decreased in the presence of RvE1. OC differentiation was inhibited by RvE1 as demonstrated by decreased number of multinuclear OC, a delay in the time course of OC development and attenuation of receptor activator of NF-,B ligand-induced nuclear translocation of the p50 subunit of NF-,B. OC survival and apoptosis were not altered by RvE1. Messenger RNA for both receptors of RvE1, ChemR23 and BLT1 is expressed in OC cultures. Leukotriene B4 (LTB4) competed with [3H]RvE1 binding on OC cell membrane preparations, and the LTB4 antagonist U75302 prevented RvE1 inhibition of OC growth, indicating that BLT1 mediates RvE1 actions on OC. Primary OC synthesized the RvE1 precursor 18R -hydroxy-eicosapentaenoic acid and LTB4. Co-incubation of OC with peripheral blood neutrophils resulted in transcellular RvE1 biosynthesis. Conclusions and implications: These results indicate that RvE1 inhibits OC growth and bone resorption by interfering with OC differentiation. The bone-sparing actions of RvE1 are in addition to inflammation resolution, a direct action in bone remodelling. British Journal of Pharmacology (2008) 155, 1214,1223; doi:10.1038/bjp.2008.367; published online 22 September 2008 [source]


    Plectin deposition at podosome rings requires myosin contractility

    CYTOSKELETON, Issue 8 2008
    Annica Gad
    Abstract Metalloproteinase-dependent tissue invasion requires the formation of podosomes and invadopodia for localized matrix degradation. Actin cytoskeleton remodeling via Arp2/3-mediated actin polymerization is essential for podosome formation, and dynamic microtubules have an important role in maintaining podosome turnover in macrophages and osteoclasts. Little is known, however, about the involvement of the intermediate filament cytoskeleton in formation, stabilization, and turnover of podosomes. Here we show that vimentin intermediate filaments colocalize with the early sites of podosome formation at the stress fiber - focal adhesion interface in cultured vascular smooth muscle cells, but do not directly contribute to podosome formation, or stabilization. In unstimulated A7r5 cells the cytolinker protein plectin poorly colocalized with vimentin and the microdomains, but following induction by phorbol ester accumulated in the rings that surround the podosomes. In plectin-deficient A7r5 cells actin stress fiber remodelling is reduced in response to PDBu, and small podosomes remain localized at stable actin stress fibres. Pharmacological inhibition of actomyosin contractility by blebbistatin leads to an aberrant localization of podosomes away from the cell periphery and induces failure of plectin to surround the outer perimeter of these invasive adhesions. Taken together, we conclude that plectin is involved in growth and maturation of podosomes by reducing focal adhesion and stress fiber turnover, and that actomyosin-dependent contractility is required for the peripheral localization and specific deposition of plectin at the podosome rings. Cell Motil. Cytoskeleton 2008. © 2008 Wiley-Liss, Inc. [source]


    Type I collagen is a genetic modifier of matrix metalloproteinase 2 in murine skeletal development

    DEVELOPMENTAL DYNAMICS, Issue 6 2007
    Mikala Egeblad
    Abstract Recessive inactivating mutations in human matrix metalloproteinase 2 (MMP2, gelatinase A) are associated with syndromes that include abnormal facial appearance, short stature, and severe bone loss. Mmp2,/, mice have only mild aspects of these abnormalities, suggesting that MMP2 function is redundant during skeletal development in the mouse. Here, we report that Mmp2,/, mice with additional mutations that render type I collagen resistant to collagenase-mediated cleavage to TCA and TCB fragments (Col1a1r/r mice) have severe developmental defects resembling those observed in MMP2 -null humans. Composite Mmp2,/,;Col1a1r/r mice were born in expected Mendelian ratios but were half the size of wild-type, Mmp2,/,, and Col1a1r/r mice and failed to thrive. Furthermore, composite Mmp2,/,;Col1a1r/r animals had very abnormal craniofacial features with shorter snouts, bulging skulls, incompletely developed calvarial bones and unclosed cranial sutures. In addition, trabecular bone mass was reduced concomitant with increased numbers of bone-resorbing osteoclasts and osteopenia. In vitro, MMP2 had a unique ability among the collagenolytic MMPs to degrade mutant collagen, offering a possible explanation for the genetic interaction between Mmp2 and Col1a1r. Thus, because mutations in the type I collagen gene alter the phenotype of mice with null mutations in Mmp2, we conclude that type I collagen is an important modifier gene for Mmp2. Developmental Dynamics 236:1683,1693, 2007. © 2007 Wiley-Liss, Inc. [source]


    Renal phosphate handling in human , what can we learn from hereditary hypophosphataemias?

    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 6 2010
    Stefan Amatschek
    Eur J Clin Invest 2010; 40 (6): 552,560 Abstract Background, Renal reabsorption of inorganic phosphate is critical for the maintenance of phosphate homeostasis. The sodium dependent phosphate cotransporters NaPi-IIa and NaPi-IIc have been identified to fulfill this task at the brush border membrane of proximal tubule cells. Various factors including dietary phosphate intake, parathyroid hormone, or the so called phosphatonins such as FGF23 have been shown to regulate activity of these transporters. Design, This review seeks to give an update on our current knowledge about regulatory mechanisms involved in human renal phosphate reabsorption. Results, Recently, an increasing number of genes have been identified that are directly associated with inherited phosphate wasting disorders (Klotho, PHEX, DMP1 and NHERF1). Several of these genes are predominantly expressed by osteocytes and osteoclasts in the bone suggesting indispensable signalling pathways between kidneys and the skeleton. Conclusion, In this review, the affected gene products in these inherited hypophosphataemias and their contribution to phosphate homeostasis are discussed. [source]


    IL-23 promotes osteoclast formation by up-regulation of receptor activator of NF-,B (RANK) expression in myeloid precursor cells

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 10 2008
    Li Chen
    Abstract Inflammation-mediated bone loss is a major feature of various bone diseases including rheumatoid arthritis, osteoarthritis and advanced periodontitis. Enhanced osteoclast development or activity at the inflammation site results in bone resorption. IL-23 is a heterodimeric cytokine belonging to the IL-6/IL-12 family that has been implicated in the pathogenesis of rheumatoid arthritis and demonstrated to play a role in osteoclastogenesis via stimulation of IL-17 production. In this study we investigated whether IL-23 contributes to the regulation of osteoclast differentiation independent of the IL-17 pathway. We show that IL-23 dose-dependently up-regulates receptor activator of NF-,B expression in primary murine bone marrow macrophages and RAW264.7 cells and thereby promotes commitment of myeloid precursor cells to receptor activator of NF-,B ligand-mediated osteoclastic differentiation. However, IL-23 by itself is insufficient to induce osteoclastogenesis. Increased osteoclastic differentiation of cells was associated with enhanced cathepsin K expression and dentine resorption indicating enhanced formation of functional osteoclasts. IL-17 was not detectable in culture supernatants and when added to cultures, did not promote differentiation of RAW264.7 cells. These results demonstrate that IL-23 can act directly on myeloid precursor cells in addition to indirectly stimulating receptor activator of NF-,B ligand production in osteoblasts and explains its potency in driving osteoclast development in inflammation-mediated bone pathology. [source]


    Reduced growth hormone receptor immunoreactivity in osteoclasts adjacent to the erupting molar in the incisor-absent (osteopetrotic) rat

    EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 6 2003
    Anne L. Symons
    First molars fail to erupt in the incisor-absent (ia/ia) rat because of a defect in osteoclast function. Growth factors that regulate local bone metabolism include growth hormone (GH), insulin-like growth factor-I (IGF-I), epidermal growth factor (EGF) and interleukin-1 alpha (IL- 1,). Since osteoclast function may be affected by these factors, the aim of this study was to determine the distribution of GH receptor (GHr), IGF-I, EGF and IL-1,, in osteoclasts located occlusal to the erupting first molar, in the ,eruption pathway', in normal and ia/ia rats. Sagittal sections of the first molar and adjacent bone from 3- and 9-d-old animals were examined. Osteoclasts were identified using tartrate-resistant acid phosphatase (TRAP). The TRAP-positive osteoclast cell numbers were higher in ia/ia animals at 3 and 9 days-of-age. In the ia/ia group, fewer osteoclasts were GHr- and IGF-I-positive at 3 d of age, and at 9 d of age fewer osteoclasts were GHr-positive. In the ia/ia rat, defective osteoclast function failed to resorb bone to provide an eruption pathway for the lower first molar. The expression of GHr, and to some degree IGF-I, by these osteoclasts was reduced, which may be related to their ability to differentiate and function. [source]


    Identification and functional characterization of an Src homology domain 3 domain-binding site on Cbl

    FEBS JOURNAL, Issue 23 2006
    Archana Sanjay§
    Cbl is an adaptor protein and ubiquitin ligase that binds and is phosphorylated by the nonreceptor tyrosine kinase Src. We previously showed that the primary interaction between Src and Cbl is mediated by the Src homology domain 3 (SH3) of Src binding to proline-rich sequences of Cbl. The peptide Cbl RDLPPPPPPDRP(540,551), which corresponds to residues 540,551 of Cbl, inhibited the binding of a GST,Src SH3 fusion protein to Cbl, whereas RDLAPPAPPPDR(540,551) did not, suggesting that Src binds to this site on Cbl in a class I orientation. Mutating prolines 543,548 reduced Src binding to the Cbl 479,636 fragment significantly more than mutating the prolines in the PPVPPR(494,499) motif, which was previously reported to bind Src SH3. Mutating Cbl prolines 543,548 to alanines substantially reduced Src binding to Cbl, Src-induced phosphorylation of Cbl, and the inhibition of Src kinase activity by Cbl. Expressing the mutated Cbl in osteoclasts induced a moderate reduction in bone-resorbing activity and increased amounts of Src protein. In contrast, disabling the tyrosine kinase-binding domain of full-length Cbl by mutating glycine 306 to glutamic acid, and thereby preventing the previously described binding of the tyrosine kinase-binding domain to the Src phosphotyrosine 416, had no effect on Cbl phosphorylation, the inhibition of Src activity by full-length Cbl, or bone resorption. These data indicate that the Cbl RDLPPPP(540,546) sequence is a functionally important binding site for Src. [source]


    Transcriptionally active nuclei are selective in mature multinucleated osteoclasts

    GENES TO CELLS, Issue 10 2010
    Min-Young Youn
    Multinucleation is indispensable for the bone-resorbing activity of mature osteoclasts. Although multinucleation is evident in mature osteoclasts and certain other cell types, putative regulatory networks among nuclei remain poorly characterized. To address this issue, transcriptional activity of each nucleus in a multinucleated osteoclast was assessed by detecting the distributions of nuclear proteins by immunocytochemistry and primary transcripts by RNA FISH. Patterns of epigenetic histone markers governing transcription as well as localization of tested nuclear receptor proteins appeared indistinguishable among nuclei in differentiated Raw264 cells and mouse mature osteoclasts. However, RNAPII-Ser5P/2P and NFATc1 proteins were selectively distributed in certain nuclei in the same cell. Similarly, the distributions of primary transcripts for osteoclast-specific genes (Nfatc1, Ctsk and Acp5) as well as a housekeeping gene (beta-tubulin) were limited in certain nuclei within individual cells. By fusing two Raw264 cell lines that stably expressed ZsGreen-NLS and DsRed-NLS proteins, transmission of nuclear proteins across all of the nuclei in a cell could be observed, presumably through the shared cytoplasm. Taken together, we conclude that although nuclear proteins are diffusible among nuclei, only certain nuclei within a multinucleated osteoclast are transcriptionally active. [source]


    Point mutations of 3BP2 identified in human-inherited disease cherubism result in the loss of function

    GENES TO CELLS, Issue 11 2004
    S. M. Shahjahan Miah
    Adaptor protein 3BP2 positively regulates the high affinity IgE receptor (Fc,RI)-mediated activation of degranulation in mast cells. Genetic study identified the point mutations of 3BP2 gene in human-inherited disease cherubism. The multiple cysts in cherubism lesion of jaw bones are filled with the activated osteoclasts and stromal cells, including mast cells. By over-expression study using rat basophilic leukaemia RBL-2H3 mast cells, we have analysed the effect of the point mutations on the function of 3BP2 protein, which plays a positive regulatory role on Fc,RI-mediated mast cell activation. Over-expression of 3BP2 mutants suppressed the antigen-induced degranulation and cytokine gene transcription. Antigen-induced phosphorylation of Vav1, activation of Rac1, extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen activated protein kinase (MAPK), inhibitor of nuclear factor ,B kinase (IKK) and nuclear factor of activated T cells (NFAT) were all impaired in the cells over-expressing the cherubism mutants of 3BP2. Furthermore, cherubism mutations of 3BP2 may abrogate the binding ability to interact with chaperone protein 14-3-3. These results demonstrate that over-expression of the mutant form of 3BP2 inhibits the antigen-induced mast cell activation. It suggests that point mutations of 3BP2 gene cause the dysfunction of 3BP2 in vivo. [source]