Osteoblastic Cell Line (osteoblastic + cell_line)

Distribution by Scientific Domains


Selected Abstracts


Cyclooxygenase-2 Expression and Prostaglandin E2 Production in Response to Acidic pH Through OGR1 in a Human Osteoblastic Cell Line,,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2008
Hideaki Tomura
Abstract Acidosis has been shown to induce depletion of bone calcium from the body. This calcium release process is thought to be partially cell mediated. In an organ culture of bone, acidic pH has been shown to induce cyclooxygenase-2 (COX-2) induction and prostaglandin E2 (PGE2) production, resulting in stimulation of bone calcium release. However, the molecular mechanisms whereby osteoblasts sense acidic circumstances and thereby induce COX-2 induction and PGE2 production remain unknown. In this study, we used a human osteoblastic cell line (NHOst) to characterize cellular activities, including inositol phosphate production, intracellular Ca2+ concentration ([Ca2+]i), PGE2 production, and COX-2 mRNA and protein expression, in response to extracellular acidification. Small interfering RNA (siRNA) specific to the OGR1 receptor and specific inhibitors for intracellular signaling pathways were used to characterize acidification-induced cellular activities. We found that extracellular acidic pH induced a transient increase in [Ca2+]i and inositol phosphate production in the cells. Acidification also induced COX-2 induction, resulting in PGE2 production. These proton-induced actions were markedly inhibited by siRNA targeted for the OGR1 receptor and the inhibitors for Gq/11 protein, phospholipase C, and protein kinase C. We conclude that the OGR1/Gq/11/phospholipase C/protein kinase C pathway regulates osteoblastic COX-2 induction and subsequent PGE2 production in response to acidic circumstances. [source]


The Dose-Response Effects of Ethanol on the Human Fetal Osteoblastic Cell Line

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2001
A. Maran
Abstract Alcohol is a risk factor for the development of osteoporosis, especially in men. Chronic alcohol abuse decreases bone mass, which contributes to the increased incidence of fractures. To better understand the mechanism of action of ethanol on bone metabolism, we have studied the dose-response effects of ethanol on conditionally immortalized human fetal osteoblasts (hFOB) in culture. Ethanol treatment had no significant effects on osteoblast number after 1 day or 7 days. Ethanol treatment did not reduce type I collagen protein levels at either time point at any dose but slightly reduced alkaline phosphatase activity after 7 days. The messenger RNA (mRNA) levels for alkaline phosphatase, type I collagen, and osteonectin were unaltered by 24 h of ethanol treatment but a high dose (200 mM) reduced mRNA levels for the two bone matrix proteins after 7 days. Ethanol treatment led to dose-dependent increases in transforming growth factor ,1 (TGF-,1) mRNA levels and decreases in TGF-,2 mRNA levels. The concentration of ethanol in the medium decreased with time because of evaporation but there was little degradation caused by metabolism. These results, which show that cultured osteoblasts are less sensitive than osteoblasts in vivo, suggest that the pronounced inhibitory effects of ethanol on bone formation are not caused by direct cell toxicity. [source]


Cyclooxygenase-2 Expression and Prostaglandin E2 Production in Response to Acidic pH Through OGR1 in a Human Osteoblastic Cell Line,,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2008
Hideaki Tomura
Abstract Acidosis has been shown to induce depletion of bone calcium from the body. This calcium release process is thought to be partially cell mediated. In an organ culture of bone, acidic pH has been shown to induce cyclooxygenase-2 (COX-2) induction and prostaglandin E2 (PGE2) production, resulting in stimulation of bone calcium release. However, the molecular mechanisms whereby osteoblasts sense acidic circumstances and thereby induce COX-2 induction and PGE2 production remain unknown. In this study, we used a human osteoblastic cell line (NHOst) to characterize cellular activities, including inositol phosphate production, intracellular Ca2+ concentration ([Ca2+]i), PGE2 production, and COX-2 mRNA and protein expression, in response to extracellular acidification. Small interfering RNA (siRNA) specific to the OGR1 receptor and specific inhibitors for intracellular signaling pathways were used to characterize acidification-induced cellular activities. We found that extracellular acidic pH induced a transient increase in [Ca2+]i and inositol phosphate production in the cells. Acidification also induced COX-2 induction, resulting in PGE2 production. These proton-induced actions were markedly inhibited by siRNA targeted for the OGR1 receptor and the inhibitors for Gq/11 protein, phospholipase C, and protein kinase C. We conclude that the OGR1/Gq/11/phospholipase C/protein kinase C pathway regulates osteoblastic COX-2 induction and subsequent PGE2 production in response to acidic circumstances. [source]


Overexpression of Lysyl Hydroxylase-2b Leads to Defective Collagen Fibrillogenesis and Matrix Mineralization,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2005
Suchaya Pornprasertsuk
Abstract Several MC3T3-E1 cell-derived clones expressing higher levels of LH2b were analyzed for their abilities to form collagen fibrils and mineralization. The clones all exhibited smaller collagen fibrils and defective matrix mineralization in vitro and in vivo, indicating a critical role of LH2b-catalyzed post-translational modifications of collagen in bone matrix formation and mineralization. Introduction: We have recently shown that lysyl hydroxylase (LH) 2b, through its action on the telopeptidyl lysine residues of collagen, regulates collagen cross-linking pathway in the osteoblastic cell line, MC3T3-E1. To further elucidate the roles of LH2b in bone physiology, the effects of overexpression of LH2b on collagen fibrillogenesis and matrix mineralization were investigated. Materials and Methods: Several MC3T3-E1-derived osteoblastic cell clones expressing higher levels of LH2b (S clones) and two controls (i.e., MC3T3-E1 cells and those transfected with an empty vector) were cultured. MALDI-TOF mass spectrometry was used to identify the LH2b. The collagen fibrillogenesis in the cultures was characterized by transmission electron microscopy, and the ability of these clones and cells to form mineralized matrix was analyzed by both in vitro and in vivo mineralization assays. Results: The diameter of collagen fibrils in the S clone cultures was markedly smaller than that of the controls. The onset of matrix mineralization in the S clones was significantly delayed, and considerably fewer mineralized nodules were formed in their cultures in comparison with the controls. When transplanted into immunodeficient mice, the S clones failed to form mineralized matrices in vivo, whereas a bone-like mineralized matrix was well formed by the controls. The diameter of the collagen fibrils and the timing/extent of matrix mineralization in vitro were inversely correlated with the level of LH2b. In vitro cell differentiation was unaffected by the LH2b overexpression. Conclusions: These results indicate a critical role of LH2b catalyzed post-translational modification of collagen (i.e., telopeptidyl lysine hydroxylation and subsequent cross-linking) in collagen matrix formation and mineralization in bone. [source]


Dual Mechanism of Intercellular Communication in HOBIT Osteoblastic Cells: A Role for Gap-Junctional Hemichannels

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2001
Milena Romanello
Abstract Intercellular communication allows tissue coordination of cell metabolism and sensitivity to extracellular stimuli. Paracrine stimulation and cell-to-cell coupling through gap junctions induce the formation of complex cellular networks, which favors the intercellular exchange of nutrients and second messengers. Intercellular Ca2+ signaling was investigated in human osteoblast-like initial transfectant (HOBIT) cells, a human osteoblastic cell line in which cells retain most of the osteoblastic differentiation markers. HOBIT cells express connexin43 (Cx43) clustered at the cell-to-cell boundary and display functional intercellular coupling as assessed by the intercellular transfer of Lucifer yellow. Mechanical stimulation of a single cell induced a wave of increased Ca2+ that was radially propagated to surrounding cells. Treatment of cells with thapsigargin blocked mechanically induced signal propagation. Intercellular Ca2+ spreading and dye transfer were inhibited by 18,-glycyrrhetinic acid (18-GA), showing the involvement of gap junctions in signal propagation. Pretreatment of cells with suramin or with apyrase decreased the extent of wave propagation, suggesting that ATP-mediated paracrine stimulation contribute to cell-to-cell signaling. The functional expression of gap-junctional hemichannels was evidenced in experiments of Mn2+ quenching, extracellular dye uptake, and intracellular Ca2+ release, activated by uptake of inositol 1,4,5-trisphosphate (InsP3) from the external medium. Gap-junctional hemichannels were activated by low extracellular Ca2+ concentrations and inhibited by 18-GA. A role for Cx hemichannels in adenosine triphosphate (ATP) release and paracrine stimulation is suggested. [source]


Bone Mineralization and Osteoblast Differentiation Are Negatively Modulated by Integrin ,v,3

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2001
Su-Li Cheng
Abstract Numerous bone matrix proteins can interact with ,v-containing integrins including ,v,3. To elucidate the net effects of the interaction between these proteins and ,v,3 on osteoblast function, we developed a murine osteoblastic cell line that overexpressed human ,v,3. Human ,v,3-integrin was expressed on cell membrane, in which its presence did not alter the surface level of endogenous mouse ,v,3. The expressed human ,v,3 was functional because cell adhesion to osteopontin was increased and this increment was abolished by antibody against human ,v,3. The proliferation rate of cells overexpressing ,v,3 (,v,3-cells) was increased whereas matrix mineralization was decreased. To elucidate the mechanisms leading to inhibition of matrix mineralization, the expression of proteins important for mineralization was analyzed. Alkaline phosphatase activity and the expression of osteocalcin, type I collagen, and bone sialoprotein (BSP) were decreased whereas osteopontin was stimulated in ,v,3-cells. The regulation of osteopontin, osteocalcin, and BSP expression was mediated via transcriptional mechanism because their promoter activities were altered. Examination of molecules involved in integrin signaling indicated that activator protein-1 (AP-1) and extracellular signal-regulated kinase (Erk) activities were enhanced whereas c-jun N -terminal kinase (JNK) activity was decreased in ,v,3-cells. The activity of p38 and the levels of focal adhesion kinase (FAK) and vinculin were not altered. Moreover, the adhesions of ,v,3-cells to type I collagen and fibronectin were inhibited, which was attributed to decreased ,1-integrin levels on cell surface. In conclusion, overexpressing ,v,3-integrin in osteoblasts stimulated cell proliferation but retarded differentiation, which were derived via altered integrin-matrix interactions, signal transduction, and matrix protein expression. [source]


Further characterization of human fetal osteoblastic hFOB 1.19 and hFOB/ER, cells: Bone formation in vivo and karyotype analysis using multicolor fluorescent in situ hybridization

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2002
M. Subramaniam
Abstract We have previously generated an immortalized human fetal osteoblastic cell line (hFOB) using stably transfected temperature sensitive SV40 T-antigen (Harris et al. [1995a] J. Bone. Miner. Res. 10:178,1860). To characterize these cells for phenotypic/genotypic attributes desired for a good cell model system, we performed karyotype analysis by multicolor fluorescent in situ hybridization (M-FISH), their ability to form bone in vivo without developing cell transformation, and finally their ability to form extracellular matrix formation in vitro. The karyotype analysis of hFOB cells revealed structural or numeric anomalies involving 1,2 chromosomes. In contrast, the human osteosarcoma MG63 cells displayed multiple, and often complex, numeric, and structural abnormalities. Subcutaneous injection of hFOB cells in the presence of Matrigel into nude mice resulted in bone formation after 2,3 weeks. Electron microscopic analysis of the extracellular matrix deposited by hFOB cells in culture revealed a parallel array of lightly banded fibrils typical of the fibrillar collagens such as type I and III. These results demonstrate that the hFOB cell line has minimal chromosome abnormalities, exhibit the matrix synthetic properties of differentiated osteoblasts, and are immortalized but non-transformed cell line. These hFOB cells thus appear to be an excellent model system for the study of osteoblast biology in vitro. J. Cell. Biochem. 87: 9,15, 2002. © 2002 Wiley-Liss, Inc. [source]


cAMP activation by PACAP/VIP stimulates IL-6 release and inhibits osteoblastic differentiation through VPAC2 receptor in osteoblastic MC3T3 cells

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2009
Azusa Nagata
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP), a member of the glucagon/vasoactive intestinal peptide (VIP) superfamily, stimulates cyclic AMP accumulation initiating a variety of biological processes such as: neurotropic actions, immune and pituitary function, learning and memory, catecholamine biosynthesis and regulation of cardiopulmonary function. Both osteoclasts and osteoblasts have been shown to express receptors for PACAP/VIP implicated in their role in bone metabolism. To further understand the role of PACAP/VIP family in controlling bone metabolism, we investigated differentiation model of MC3T3-E1 cells, an osteoblastic cell line derived from mouse calvaria. Quantitative RT-PCR analysis demonstrated that MC3T3-E1 cells expressed only VPAC2 receptor and its expression was upregulated during osteoblastic differentiation, whereas VPAC1 and PAC1 receptors were not expressed. Consistent with expression of receptor subtype, both PACAP and VIP stimulate cAMP accumulation in a time- and dose-dependent manner with the similar potency in undifferentiated and differentiated cells, while Maxadilan, a specific agonist for PAC1-R, did not. Furthermore, downregulation of VPAC2-R by siRNA completely blocked cAMP response mediated by PACAP and VIP. Importantly, PACAP/VIP as well as forskolin markedly suppressed the induction of alkaline phosphatase mRNA upon differentiation and the pretreatment with 2,,5,-dideoxyadenosine, a cAMP inhibitor, restored its inhibitory effect of PACAP. We also found that PACAP and VIP stimulated IL-6 release, a stimulator of bone resorption, and VPAC2-R silencing inhibited IL-6 production. Thus, PACAP/VIP can activate adenylate cyclase response and regulate IL-6 release through VPAC2 receptor with profound functional consequences for the inhibition of osteoblastic differentiation in MC3T3-E1 cells. J. Cell. Physiol. 221: 75,83, 2009. © 2009 Wiley-Liss, Inc [source]


Effect of naringin on bone cells

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 11 2006
R.W.K. Wong
Abstract Statin, a HMG-CoA reductase inhibitor, was shown to increase BMP-2 gene expression for bone formation, by blocking the mevalonate pathway in cholesterol production. We investigated the effect of naringin, a flavonoid available commonly in citrus fruits, which was also a HMG-CoA reductase inhibitor, in UMR 106 osteoblastic cell line in vitro. The control group consisted of cells cultured without any intervention for different time intervals (24 h, 48 h, and 72 h), whereas the experimental (naringin) group consisted of cells cultured with naringin of different concentrations (0.001 µmol/L, 0.01 µmol/L, and 0.1 µmol/L) for the same time intervals of the control. Colorimetric Tetrazolium (MTT) assay, total protein content assay, and alkaline phosphatase activity were used to measure the cellular activities. Results for the naringin group showed an increase in MTT assay compared with the control and the effect was dose dependent. At high concentration (0.1 µmol), the increases ranged from 60% to 80%. In the total protein content assay, naringin also showed an increase compared with control and the effect was also dose dependent. At high concentration (0.1 µmol), the increases ranged from 9% to 20%. In the alkaline phosphatase activity assay, naringin at high concentration (0.1 µmol) significantly increased the activity up to 20%. In conclusion, naringin significantly increased bone cell activities in vitro. This is the first study specifically attempted to investigate the effect of naringin on bone cell activities. Besides statin, this provided another example of mevalonate pathway blockage in the cholesterol production pathway by HMG-CoA reductase inhibition will increase the bone cell activities. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 24:2045,2050, 2006 [source]


Prostaglandin D2 pathway and peroxisome proliferator-activated receptor ,-1 expression are induced by mechanical loading in an osteoblastic cell line

JOURNAL OF PERIODONTAL RESEARCH, Issue 2 2006
Chitpol Siddhivarn
Objective:, The hypothesis underlying the current study was that the arachidonic acid cascade, specifically activation of the prostaglandin (PG) D2 pathway in osteoblasts, is an anabolic signal induced by mechanical loading. Background:, Previous studies have shown that mechanical loading of osteoblasts triggers cyclooxygenase (COX)-2, PGE2 and prostacyclin (PGI2) synthesis. Since modest mechanical loading of osteoblasts promotes bone formation, we sought to determine whether mechanical stress activates the osteoblastic PGD2 pathway resulting in the synthesis of osteogenic cyclopentenones, including ,12PGJ2. Methods:, Osteoblast monolayers were stretched using a Bioflex apparatus at a frequency of 1 Hz with 1% elongation. Cells and cell media were collected at various time points: 5, 10, 15, 30 min; and 1, 4, 16, 24 h. RNA was extracted for quantitative reverse transcriptase,polymerase chain reaction (RT,PCR). In certain experiments, cells were pre-labeled with 14C arachidonic acid prior to stretching. Radiolabeled metabolites in cell media were identified by reverse-phase high performance liquid chromatography (RP-HPLC). Osteoblasts were evaluated for an induction in bone nodule formation by stretching. Results:, Mechanical strain significantly increased mRNA expression of COX-1, COX-2, PGD2 synthase and peroxisome proliferator-activated receptor (PPAR) ,-1, but not of PPAR,-2 as compared to control unstretched cells (p < 0.05). Mechanical loading stimulated the release of PGE2, PGD2 and the PGD2 metabolite ,12PGJ2. Mechanical strain resulted in the induction of bone nodules. Conclusions:, This report indicates that mechanical loading of osteoblasts results in activation of PGD2 and the concomitant expression of transcription factor PPAR,-1 mRNA. The coordinated synthesis of ,12PGJ2, a natural ligand for PPAR,-1, with the increased expression of PPAR,-1, suggests that biomechanical transduction pathways that initially involve the activation of cyclooxygenases may also involve the activation of the ,12PGJ2,PPAR pathway. [source]


Identification of adiponectin and its receptors in human osteoblast-like cells and association of T45G polymorphism in exon 2 of adiponectin gene with lumbar spine bone mineral density in Korean women

CLINICAL ENDOCRINOLOGY, Issue 5 2006
Won Young Lee
Summary Objective, The role of adiponectin in bone metabolism has been recently reported in in vitro and in vivo studies. There has been no report on the association of adiponectin gene polymorphism and bone mineral density (BMD). Therefore, we investigated whether two single nucleotide polymorphisms (SNPs), T45G and G276T, in the adiponectin gene were related to BMD in Koreans. We also report on the identification of adiponectin and its receptors 1 and 2 in human osteoblast-like cell lines. Patients and measurements, MG-63 cells were cultured and osteogenic and adipogenic differentiations from human mesenchymal stem cells (hMSCs) were performed. RNA was then extracted from the cultured cells and reverse transcriptase-polymerase chain reaction (RT-PCR) was performed using primers for adiponectin and for the adiponectin receptor genes. In 249 female and 80 male subjects, measurements were made of their lumbar spine and femoral neck BMDs, and biochemical markers of bone turnover. The genotyping of the T45G polymorphism in exon 2 and the G276T polymorphisms in intron 2 in the adiponectin gene was performed using an allelic discrimination assay with a TaqMan probe. Analyses were performed separately in each cohort. Results, We found that the mRNAs for adiponectin and for adiponectin receptor 1 (AdipoR1) and 2 (AdipoR2) were expressed in the MG-63 cells. Sequencing of the PCR products revealed that they were identical to human adiponectin, AdipoR1 and AdipoR2, respectively. mRNAs for adiponectin, AdipoR1 and AdipoR2 were also expressed in the osteoblastic and adipogenic cell lines differentiated from hMSCs. For the polymorphism study, the frequencies of T45G and G276T in the adiponectin gene were in compliance with Hardy,Weinberg equilibrium and the two polymorphisms were in complete linkage disequilibrium (D, = ,1·0, P < 0·001). In the female cohort, subjects with G alleles at the T45G locus had significantly lower lumbar spine BMD than those subjects with the TT genotype. Although BMD levels showed no association with the G276T locus, the GT genotype group showed significantly higher urine deoxypyridinoline levels than other genotype groups. In the male cohort, no association was observed between adiponectin genotypes and BMD levels. Conclusions, We observed the expression of adiponectin, AdipoR1 and AdipoR2 in the MG-63 cell line and the osteoblastic cell line differentiated from hMSCs. T45G polymorphism in exon 2 of the adiponectin gene is associated with lumbar spine BMD and G276T polymorphism in intron 2 of the adiponectin gene is associated with the urine deoxypyridinoline level in Korean women. Additional studies are needed to elucidate the precise contribution of adiponectin to bone mineral metabolism. [source]


Regulation of Human Skeletal Stem Cells Differentiation by Dlk1/Pref-1

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2004
Basem M Abdallah
Abstract Dlk-1/Pref-1 was identified as a novel regulator of human skeletal stem cell differentiation. Dlk1/Pref-1 is expressed in bone and cultured osteoblasts, and its constitutive overexpression led to inhibition of osteoblast and adipocyte differentiation of human marrow stromal cells. Introduction: Molecular control of human mesenchymal stem cell (hMSC) differentiation into osteoblasts and adipocytes is not known. In this study, we examined the role of delta-like 1/preadipocyte factor-1 (Dlk1/Pref-1) in regulating the differentiation of hMSCs. Materials and Methods: As a model for hMSCs, we have stably transduced telomerase-immortalized hMSC (hMSC-TERT) with the full length of human Dlk1/Pref-1 cDNA and tested its effect on hMSC growth and differentiation into osteoblasts or adipocytes as assessed by cytochemical staining, FACS analysis, and real time PCR. Ex vivo calvaria organ cultures assay was used to confirm the in vitro effect of Dlk/Pref-1 on bone formation. Results: Dlk1/Pref-1 was found to be expressed in fetal and adult bone, hMSCs, and some osteoblastic cell lines. A retroviral vector containing the human Dlk1/Pref-1 cDNA was used to create a cell line (hMSC-dlk1) expressing high levels of Dlk1/Pref-1 protein. Overexpression of Dlk1/Pref-1 did not affect the proliferation rate of hMSC, but the ability to form mature adipocytes, mineralized matrix in vitro, and new bone formation in neonatal murine calvariae organ cultures was reduced. These effects were associated with inhibition of gene expression markers of late stages of adipocyte (adipocyte fatty acid-binding protein [aP2], peroxisome proliferator-activated receptor-gamma2 [PPAR,2], and adiponectin [APM1]) and osteoblast differentiation (alkaline phosphatase [ALP], collagen type I [Col1], and osteocalcin [OC]). Lineage commitment markers for adipocytes (adipocyte determination and differentiation factor ,1 [ADD1]) and osteoblasts (core binding factor/runt-related binding factor 2 [Cbfa1/Runx2]) were not affected. Conclusion: During hMSC differentiation, Dlk1/Pref-1 maintains the size of the bipotential progenitor cell pool by inhibiting the formation of mature osteoblasts and adipocytes. [source]