Home About us Contact | |||
Osteoblast Adhesion (osteoblast + adhesion)
Selected AbstractsOsteoblast Adhesion and Proliferation on Poly(3-octylthiophene) Thin FilmsMACROMOLECULAR BIOSCIENCE, Issue 3 2010Charlene Rincón Abstract In this study we assessed the suitability of semiconducting P3OT thin films (30,nm) to sustain attachment, spreading, and proliferation of MC3T3-E1 osteoblasts. Cell area correlated with surface wettability: area was larger on the more hydrophilic surface (TCPS) and lower on the more hydrophobic surface (P3OT). Cells were rounder, characterized by higher circularity values, on TCPS and Si compared to P3OT. P3OT proliferation rate at 24,h fell twofold after 48,h, then recovered at 72,h to a value significantly higher than that on TCPS. Presoaking experiments showed no evidence of cytotoxic effects or leachants from P3OT. Overall, we conclude that P3OT is a viable substrate for osteoblast attachment and proliferation. [source] Osteoconductive and Osteoinductive Properties of Zeolite MFI Coatings on Titanium AlloysADVANCED FUNCTIONAL MATERIALS, Issue 24 2009Rajwant S. Bedi Abstract The use of zeolite MFI-coated titanium alloy for bone cell growth and new bone formation in vitro is investigated. The corrosion-resistant MFI coating is shown to be osteoconductive and to promote proliferation of human fetal osteoblasts (hFOBs) as compared to bare titanium alloy, Ti6Al4V. The zeolite crystal microstructure appears to facilitate osteoblast adhesion and induces osteointegration, as evaluated with microscopy. In addition, the zeolite promotes the differentiation of hFOBs into mature osteoblasts, as well as the production of a mineralized matrix at earlier times in culture compared to Ti6Al4V, indicating higher osteoinductive properties of the MFI coating than titanium alone. A significant increase in the expression of the bone morphogenetic protein (BMP-2) gene is measured in hFOBs cultured on zeolite coatings compared to bare Ti6Al4V. This is the first report on highly corrosion-resistant zeolite MFI coatings on Ti6A14V alloys with the potential to be used as a material of improved osteointegration appropriate for bone tissue regeneration. [source] Porous silicon as a cell interface for bone tissue engineeringPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 5 2007Wei Sun Abstract A novel cell interface has been constructed on porous silicon. We have demonstrated that nano- to macro-scale porous architectures have promising osteoconductive potentials. Macroporous silicon (pore opening 1,2 µm) is especially favorable for osteoblast adhesion, growth, protein synthesis and mineralization. An electronic/optoelectronic controllable medical implant with both scaffolding and drug delivery functions may be created for orthopaedic tissue engineering with this material. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Regulation of implant surface cell adhesion: characterization and quantification of S-phase primary osteoblast adhesions on biomimetic nanoscale substratesJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 2 2007Manus J.P. Biggs Abstract Integration of an orthopedic prosthesis for bone repair must be associated with osseointegration and implant fixation, an ideal that can be approached via topographical modification of the implant/bone interface. It is thought that osteoblasts use cellular extensions to gather spatial information of the topographical surroundings prior to adhesion formation and cellular flattening. Focal adhesions (FAs) are dynamic structures associated with the actin cytoskeleton that form adhesion plaques of clustered integrin receptors that function in coupling the cell cytoskeleton to the extracellular matrix (ECM). FAs contain structural and signalling molecules crucial to cell adhesion and survival. To investigate the effects of ordered nanotopographies on osteoblast adhesion formation, primary human osteoblasts (HOBs) were cultured on experimental substrates possessing a defined array of nanoscale pits. Nickel shims of controlled nanopit dimension and configuration were fabricated by electron beam lithography and transferred to polycarbonate (PC) discs via injection molding. Nanopits measuring 120 nm diameter and 100 nm in depth with 300 nm center,center spacing were fabricated in three unique geometric conformations: square, hexagonal, and near-square (300 nm spaced pits in square pattern, but with ±50 nm disorder). Immunofluorescent labeling of vinculin allowed HOB adhesion complexes to be visualized and quantified by image software. Perhipheral adhesions as well as those within the perinuclear region were observed, and adhesion length and number were seen to vary on nanopit substrates relative to smooth PC. S-phase cells on experimental substrates were identified with bromodeoxyuridine (BrdU) immunofluorescent detection, allowing adhesion quantification to be conducted on a uniform flattened population of cells within the S-phase of the cell cycle. Findings of this study demonstrate the disruptive effects of ordered nanopits on adhesion formation and the role the conformation of nanofeatures plays in modulating these effects. Highly ordered arrays of nanopits resulted in decreased adhesion formation and a reduction in adhesion length, while introducing a degree of controlled disorder present in near-square arrays, was shown to increase focal adhesion formation and size. HOBs were also shown to be affected morphologicaly by the presence and conformation of nanopits. Ordered arrays affected cellular spreading, and induced an elongated cellular phenotype, indicative of increased motility, while near-square nanopit symmetries induced HOB spreading. It is postulated that nanopits affect osteoblast,substrate adhesion by directly or indirectly affecting adhesion complex formation, a phenomenon dependent on nanopit dimension and conformation. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:273,282, 2007 [source] |