Organic Self-assembled Monolayer (organic + self-assembled_monolayer)

Distribution by Scientific Domains


Selected Abstracts


Transparent Photo-Stable Complementary Inverter with an Organic/Inorganic Nanohybrid Dielectric Layer

ADVANCED FUNCTIONAL MATERIALS, Issue 5 2009
Min Suk Oh
Abstract Transparent electronics has been one of the key terminologies forecasting the ubiquitous technology era. Several researchers have thus extensively developed transparent oxide-based thin-film transistors (TFTs) on glass and plastic substrates. However, work in transparent electronics has been limited mostly to high-voltage devices operating at more than a few tens of volts, and has mainly focused on transparent display drivers. Low-voltage logic devices, such as transparent complementary inverters, operating in an electrically stable and photo-stable manner, are now very necessary to practically realize transparent electronics. Electrically stable dielectrics with high strength and high capacitance must also be proposed to support this mission, and simultaneously these dielectrics must be compatible with both n- and p-channel TFTs in device fabrication. Here, a nanohybrid dielectric layer that is composed of multiple units of inorganic oxide and organic self-assembled monolayer is proposel to support a transparent complementary TFT inverter operating at 3,V. [source]


A Colloidal Au Monolayer Modulates the Conformation and Orientation of a Protein at the Electrode/Solution Interface

CHEMPHYSCHEM, Issue 8 2005
Xiue Jiang
Abstract The orientation and conformation of adsorbed cytochrome c (cyt c) at the interface between an electrode modified with colloidal Au and a solution were studied by electrochemical, spectroscopic, and spectroelectrochemical techniques. The results indicate that the colloidal Au monolayer formed via preformation of an organic self-assembled monolayer (SAM) can increase the electronic coupling between the SAM and cyt c in the same manner as bifunctional molecular bridges, one functional group of which is bound to the electrode surface while the other interacts with the protein surface. The approach of cyt c to the modified electrode/solution interface can be assisted by strong interactions of the intrinsic charge of colloidal particles with cyt c, while the heme pocket remains almost unchanged due to the screening effect of the negatively charged field created by the intrinsic charge. The conformational changes of cyt c induced by its adsorption at a bare glassy carbon electrode/solution interface and the effect of the electric field on the ligation state of the heme can be avoided at the colloidal-Au-modified electrode/solution interface. Finally, a possible model for the adsorption orientation of cyt c at the colloidal-Au-modified electrode/solution interface is proposed. [source]


Defect Tolerance and Nanomechanics in Transistors that Use Semiconductor Nanomaterials and Ultrathin Dielectrics,

ADVANCED FUNCTIONAL MATERIALS, Issue 17 2008
Jong-Hyun Ahn
Abstract This paper describes experimental and theoretical studies of the mechanics of free-standing nanoribbons and membranes of single-crystalline silicon transfer printed onto patterned dielectric layers. The results show that analytical descriptions of the mechanics agree well with experimental data, and they explicitly reveal how the geometry of dielectric layers (i.e., the width and depth of the features of relief) and the silicon (i.e., the thickness and widths of the ribbons) affect mechanical bowing (i.e., "sagging") in the suspended regions of the silicon. This system is of practical importance in the use of semiconductor nanomaterials for electronic devices, because incomplete sagging near defects in gate dielectrics provides a level of robustness against electrical shorting in those regions which exceeds that associated with conventional deposition techniques for thin films. Field effect transistors formed using silicon nanoribbons transferred onto a range of ultrathin gate dielectrics, including patterned epoxy, organic self-assembled monolayers, and HfO2, demonstrate these concepts. [source]


Nanocrystalline Tin Oxide Thin Films via Liquid Flow Deposition

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 12 2003
Sitthisuntorn Supothina
Nanocrystalline films of SnO2 were deposited by liquid flow deposition (LFD), i.e., by flowing aqueous solutions of SnCl4·5H2O and HCl over single-crystalline silicon substrates at 80°C. The substrates were either oxidized and fully hydrolyzed (bare silicon) or oxidized, hydrolyzed, and then coated with siloxy-anchored organic self-assembled monolayers (SAMs). Continuous, adherent films formed on sulfonate- and thioacetate-functionalized SAMs; adherent but sometimes discontinuous films formed on bare silicon and methyl-functionalized SAMs. The films contained equiaxed cassiterite crystals, ,4,10 nm in size. The film thickness increased linearly with deposition time. The maximum growth rate observed was 85 nm·h,1 on sulfonate SAM, and the maximum film thickness obtained was 1 ,m. A new dimensionless parameter, the normalized residence time, ,, was introduced for the purpose of interpreting the influence of solution conditions (i.e., degree of supersaturation, as controlled via pH, and tin concentration) and flow characteristics (flow rate and the configuration of the deposition chamber) on the growth rate in LFD processes. The results were consistent with a particle attachment mechanism for film growth and inconsistent with heterogeneous nucleation on the substrate. [source]