Organic Electronic Devices (organic + electronic_device)

Distribution by Scientific Domains


Selected Abstracts


Conductance Enhancement Mechanisms of Printable Nanoparticulate Indium Tin Oxide (ITO) Layers for Application in Organic Electronic Devices,

ADVANCED ENGINEERING MATERIALS, Issue 4 2009
Michael Gross
We present and discuss several methods to enhance the electrical properties of nanoparticle dispersion derived ITO-layers. A maximum conductance of 132,,,1,cm,1 was achieved and films with a sheet resistance down to 5,,/, were produced. To demonstrate their applicability as electrodes in optoelectronic elements we assembled functioning polymer LED-s on them. [source]


Interface Modification to Improve Hole-Injection Properties in Organic Electronic Devices,

ADVANCED FUNCTIONAL MATERIALS, Issue 8 2006
A. Choulis
Abstract The performance of organic electronic devices is often limited by injection. In this paper, improvement of hole injection in organic electronic devices by conditioning of the interface between the hole-conducting layer (buffer layer) and the active organic semiconductor layer is demonstrated. The conditioning is performed by spin-coating poly(9,9-dioctyl-fluorene- co - N - (4-butylphenyl)-diphenylamine) (TFB) on top of the poly(3,4-ethylene dioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) buffer layer, followed by an organic solvent wash, which results in a TFB residue on the surface of the PEDOT:PSS. Changes in the hole-injection energy barriers, bulk charge-transport properties, and current,voltage characteristics observed in a representative PFO-based (PFO: poly(9,9-dioctylfluorene)) diode suggest that conditioning of PEDOT:PSS surface with TFB creates a stepped electronic profile that dramatically improves the hole-injection properties of organic electronic devices. [source]


Radical Polymers for Organic Electronic Devices: A Radical Departure from Conjugated Polymers?

ADVANCED MATERIALS, Issue 22 2009
Kenichi Oyaizu
Abstract Radical polymers are aliphatic or nonconjugated polymers bearing organic robust radicals as pendant groups per repeating unit. A large population of the radical redox sites allows the efficient redox gradient-driven electron transport through the polymer layer by outer-sphere self-exchange reactions in electrolyte solutions. The radical polymers are emerging as a new class of electroactive materials useful for various kinds of wet-type energy storage, transport, and conversion devices. Electric-field-driven charge transport by hopping between the densely populated radical sites is also a remarkable aspect of the radical polymers in the solid state, which leads to many dry-type devices such as organic memories, diodes, and switches. [source]


Scanning Probe Microscopy: Electrical Scanning Probe Microscopy on Active Organic Electronic Devices (Adv. Mater.

ADVANCED MATERIALS, Issue 1 2009
1/2009)
The inside cover, drawn by Irene Wang, illustrates that electrical atomic force microscopy techniques can play an integral part in the research and development of organic electronic materials. On p. 19 Pingree, Reid, and Ginger highlight the use of scanning probe microscopy techniques in examining heterogeneities, defects, and various transport properties including injection, trapping, and generation/recombination in organic lightemitting diodes, thin-film transistors, and solar cells. [source]


Electrical Scanning Probe Microscopy on Active Organic Electronic Devices

ADVANCED MATERIALS, Issue 1 2009
Liam S. C. Pingree
Abstract Polymer- and small-molecule-based organic electronic devices are being developed for applications including electroluminescent displays, transistors, and solar cells due to the promise of low-cost manufacturing. It has become clear that these materials exhibit nanoscale heterogeneities in their optical and electrical properties that affect device performance, and that this nanoscale structure varies as a function of film processing and device-fabrication conditions. Thus, there is a need for high-resolution measurements that directly correlate both electronic and optical properties with local film structure in organic semiconductor films. In this article, we highlight the use of electrical scanning probe microscopy techniques, such as conductive atomic force microscopy (c-AFM), electrostatic force microscopy (EFM), scanning Kelvin probe microscopy (SKPM), and similar variants to elucidate charge injection/extraction, transport, trapping, and generation/recombination in organic devices. We discuss the use of these tools to probe device structures ranging from light-emitting diodes (LEDs) and thin-film transistors (TFT), to light-emitting electrochemical cells (LECs) and organic photovoltaics. [source]


Biomaterials-based organic electronic devices

POLYMER INTERNATIONAL, Issue 5 2010
Christopher J Bettinger
Abstract Organic electronic devices have demonstrated tremendous versatility in a wide range of applications including consumer electronics, photovoltaics and biotechnology. The traditional interface of organic electronics with biology, biotechnology and medicine occurs in the general field of sensing biological phenomena. For example, the fabrication of hybrid electronic structures using both organic semiconductors and bioactive molecules has led to enhancements in the sensitivity and specificity within biosensing platforms, which in turn has a potentially wide range of clinical applications. However, the interface of biomolecules and organic semiconductors has also recently explored the potential use of natural and synthetic biomaterials as structural components of electronic devices. The fabrication of electronically active systems using biomaterials-based components has the potential to produce a large set of unique devices including environmentally biodegradable systems and bioresorbable temporary medical devices. This article reviews recent advances in the implementation of biomaterials as structural components in organic electronic devices with a focus on potential applications in biotechnology and medicine. Copyright © 2010 Society of Chemical Industry [source]


Solution Processable Fluorenyl Hexa- peri -hexabenzocoronenes in Organic Field-Effect Transistors and Solar Cells

ADVANCED FUNCTIONAL MATERIALS, Issue 6 2010
Wallace W. H. Wong
Abstract The organization of organic semiconductor molecules in the active layer of organic electronic devices has important consequences to overall device performance. This is due to the fact that molecular organization directly affects charge carrier mobility of the material. Organic field-effect transistor (OFET) performance is driven by high charge carrier mobility while bulk heterojunction (BHJ) solar cells require balanced hole and electron transport. By investigating the properties and device performance of three structural variations of the fluorenyl hexa- peri -hexabenzocoronene (FHBC) material, the importance of molecular organization to device performance was highlighted. It is clear from 1H NMR and 2D wide-angle X-ray scattering (2D WAXS) experiments that the sterically demanding 9,9-dioctylfluorene groups are preventing ,,, intermolecular contact in the hexakis-substituted FHBC 4. For bis-substituted FHBC compounds 5 and 6, ,,, intermolecular contact was observed in solution and hexagonal columnar ordering was observed in solid state. Furthermore, in atomic force microscopy (AFM) experiments, nanoscale phase separation was observed in thin films of FHBC and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) blends. The differences in molecular and bulk structural features were found to correlate with OFET and BHJ solar cell performance. Poor OFET and BHJ solar cells devices were obtained for FHBC compound 4 while compounds 5 and 6 gave excellent devices. In particular, the field-effect mobility of FHBC 6, deposited by spin-casting, reached 2.8,×,10,3,cm2 V,1 s and a power conversion efficiency of 1.5% was recorded for the BHJ solar cell containing FHBC 6 and PC61BM. [source]


Polymer Field-Effect Transistors Fabricated by the Sequential Gravure Printing of Polythiophene, Two Insulator Layers, and a Metal Ink Gate

ADVANCED FUNCTIONAL MATERIALS, Issue 2 2010
Monika M. Voigt
Abstract The mass production technique of gravure contact printing is used to fabricate state-of-the art polymer field-effect transistors (FETs). Using plastic substrates with prepatterned indium tin oxide source and drain contacts as required for display applications, four different layers are sequentially gravure-printed: the semiconductor poly(3-hexylthiophene-2,5-diyl) (P3HT), two insulator layers, and an Ag gate. A crosslinkable insulator and an Ag ink are developed which are both printable and highly robust. Printing in ambient and using this bottom-contact/top-gate geometry, an on/off ratio of >104 and a mobility of 0.04,cm2 V,1 s,1 are achieved. This rivals the best top-gate polymer FETs fabricated with these materials. Printing using low concentration, low viscosity ink formulations, and different P3HT molecular weights is demonstrated. The printing speed of 40,m min,1 on a flexible polymer substrate demonstrates that very high-volume, reel-to-reel production of organic electronic devices is possible. [source]


Intrinsic Surface Dipoles Control the Energy Levels of Conjugated Polymers

ADVANCED FUNCTIONAL MATERIALS, Issue 24 2009
Georg Heimel
Abstract Conjugated polymers are an important class of materials for organic electronics applications. There, the relative alignment of the electronic energy levels at ubiquitous organic/(in)organic interfaces is known to crucially impact device performance. On the prototypical example of poly(3-hexylthiophene) and a fluorinated derivative, the energies of the ionization and affinity levels of , -conjugated polymers are revealed to critically depend on the orientation of the polymer backbones with respect to such interfaces. Based on extensive first-principles calculations, an intuitive electrostatic model is developed that quantitatively traces these observations back to intrinsic intramolecular surface dipoles arising from the , -electron system and intramolecular polar bonds. The results shed new light on the working principles of organic electronic devices and suggest novel strategies for materials design. [source]


Nanoscale Conducting Channels at the Surface of Organic Semiconductors Formed by Decoration of Molecular Steps with Self-Assembled Molecules

ADVANCED FUNCTIONAL MATERIALS, Issue 23 2009
Bumsu Lee
Abstract Under certain conditions, self-assembling molecules preferentially bind to molecular steps at the surface of crystalline organic semiconductors, inducing a strong local doping effect. This creates macroscopically long conducting paths of nanoscale width (a single crystalline analogue of organic nanowires) that can span distances of up to 1,cm between electrical contacts. The observed effect of molecular step decoration opens intriguing possibilities for visualization, passivation, and selective doping of surface and interfacial defects in organic electronic devices and provides a novel system for research on nanoscale charge transport in organic semiconductors. In addition, this effect sheds light on the microscopic origin of nucleation and growth of self-assembled monolayers at organic surfaces. It can also have implications in electronic patterning, nanoscale chemical sensors, integrated interconnects and charge-transfer interfaces in organic transistors and solar cells. [source]


Interface Modification to Improve Hole-Injection Properties in Organic Electronic Devices,

ADVANCED FUNCTIONAL MATERIALS, Issue 8 2006
A. Choulis
Abstract The performance of organic electronic devices is often limited by injection. In this paper, improvement of hole injection in organic electronic devices by conditioning of the interface between the hole-conducting layer (buffer layer) and the active organic semiconductor layer is demonstrated. The conditioning is performed by spin-coating poly(9,9-dioctyl-fluorene- co - N - (4-butylphenyl)-diphenylamine) (TFB) on top of the poly(3,4-ethylene dioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) buffer layer, followed by an organic solvent wash, which results in a TFB residue on the surface of the PEDOT:PSS. Changes in the hole-injection energy barriers, bulk charge-transport properties, and current,voltage characteristics observed in a representative PFO-based (PFO: poly(9,9-dioctylfluorene)) diode suggest that conditioning of PEDOT:PSS surface with TFB creates a stepped electronic profile that dramatically improves the hole-injection properties of organic electronic devices. [source]


Patterned Graphene Electrodes from Solution-Processed Graphite Oxide Films for Organic Field-Effect Transistors

ADVANCED MATERIALS, Issue 34 2009
Shuping Pang
A replacement for gold as the hole-injecting metal in organic electronic devices is presented: patterned graphene electrodes prepared from graphite oxide sheets by oxygen plasma etching. Solution-processed organic FETs with poly(3-hexylthiophene) as the semiconductor and these graphene electrodes are shown to perform as well as or even better than devices with gold contacts. [source]


Electrical Scanning Probe Microscopy on Active Organic Electronic Devices

ADVANCED MATERIALS, Issue 1 2009
Liam S. C. Pingree
Abstract Polymer- and small-molecule-based organic electronic devices are being developed for applications including electroluminescent displays, transistors, and solar cells due to the promise of low-cost manufacturing. It has become clear that these materials exhibit nanoscale heterogeneities in their optical and electrical properties that affect device performance, and that this nanoscale structure varies as a function of film processing and device-fabrication conditions. Thus, there is a need for high-resolution measurements that directly correlate both electronic and optical properties with local film structure in organic semiconductor films. In this article, we highlight the use of electrical scanning probe microscopy techniques, such as conductive atomic force microscopy (c-AFM), electrostatic force microscopy (EFM), scanning Kelvin probe microscopy (SKPM), and similar variants to elucidate charge injection/extraction, transport, trapping, and generation/recombination in organic devices. We discuss the use of these tools to probe device structures ranging from light-emitting diodes (LEDs) and thin-film transistors (TFT), to light-emitting electrochemical cells (LECs) and organic photovoltaics. [source]


Biomaterials-based organic electronic devices

POLYMER INTERNATIONAL, Issue 5 2010
Christopher J Bettinger
Abstract Organic electronic devices have demonstrated tremendous versatility in a wide range of applications including consumer electronics, photovoltaics and biotechnology. The traditional interface of organic electronics with biology, biotechnology and medicine occurs in the general field of sensing biological phenomena. For example, the fabrication of hybrid electronic structures using both organic semiconductors and bioactive molecules has led to enhancements in the sensitivity and specificity within biosensing platforms, which in turn has a potentially wide range of clinical applications. However, the interface of biomolecules and organic semiconductors has also recently explored the potential use of natural and synthetic biomaterials as structural components of electronic devices. The fabrication of electronically active systems using biomaterials-based components has the potential to produce a large set of unique devices including environmentally biodegradable systems and bioresorbable temporary medical devices. This article reviews recent advances in the implementation of biomaterials as structural components in organic electronic devices with a focus on potential applications in biotechnology and medicine. Copyright © 2010 Society of Chemical Industry [source]


Nanoscale Structural and Electronic Properties of Ultrathin Blends of Two Polyaromatic Molecules: A Kelvin Probe Force Microscopy Investigation

CHEMPHYSCHEM, Issue 4 2006
Vincenzo Palermo Dr.
Abstract We describe a Kelvin Probe Force Microscopy (KPFM) study on the morphological and electronic properties of complex mono and bi-molecular ultrathin films self-assembled on mica. These architectures are made up from an electron-donor (D), a synthetic all-benzenoid polycyclic aromatic hydrocarbon, and an electron-acceptor (A), perylene-bis-dicarboximide. The former molecule self-assembles into fibers in single component films, while the latter molecule forms discontinuous layers. Taking advantage of the different solubility and self-organizing properties of the A and D molecules, multicomponent ultrathin films characterized by nanoscale phase segregated fibers of D embedded in a discontinuous layer of A are formed. The direct estimation of the surface potential, and consequently the local workfunction from KPFM images allow a comparison of the local electronic properties of the blend with those of the monocomponent films. A change in the average workfunction values of the A and D nanostructures in the blend occurs which is primarily caused by the intimate contact between the two components and the molecular order within the nanostructure self-assembled at the surface. Additional roles can be ascribed to the molecular packing density, to the presence of defects in the film, to the different conformation of the aliphatic peripheral chains that might cover the conjugated core and to the long-range nature of the electrostatic interactions employed to map the surface by KPFM limiting the spatial and potential resolution. The local workfunction studies of heterojunctions can be of help to tune the electronic properties of active multicomponent films, which is crucial for the fabrication of efficient organic electronic devices as solar cells. [source]


Influence of Molecular Order on the Local Work Function of Nanographene Architectures: A Kelvin-Probe Force Microscopy Study

CHEMPHYSCHEM, Issue 11 2005
Vincenzo Palermo Dr.
Abstract We report a Kelvin-probe force microscopy (KPFM) investigation on the structural and electronic properties of different submicron-scale supramolecular architectures of a synthetic nanographene, including extended layers, percolated networks and broken patterns grown from solutions at surfaces. This study made it possible to determine the local work function (WF) of the different , -conjugated nanostructures adsorbed on mica with a resolution below 10 nm and 0.05 eV. It revealed that the WF strongly depends on the local molecular order at the surface, in particular on the delocalization of electrons in the , -states, on the molecular orientation at surfaces, on the molecular packing density, on the presence of defects in the film and on the different conformations of the aliphatic peripheral chains that might cover the conjugated core. These results were confirmed by comparing the KPFM-estimated local WF of layers supported on mica, where the molecules are preferentially packed edge-on on the substrate, with the ultraviolet photoelectron spectroscopy microscopically measured WF of layers adsorbed on graphite, where the molecules should tend to assemble face-on at the surface. It appears that local WF studies are of paramount importance for understanding the electronic properties of active organic nanostructures, being therefore fundamental for the building of high-performance organic electronic devices, including field-effect transistors, light-emitting diodes and solar cells. [source]