Home About us Contact | |||
Order Phase Transition (order + phase_transition)
Kinds of Order Phase Transition Selected AbstractsA General Approach to First Order Phase Transitions and the Anomalous Behavior of Coexisting Phases in the Magnetic CaseADVANCED FUNCTIONAL MATERIALS, Issue 6 2009Sergio Gama Abstract First order phase transitions for materials with exotic properties are usually believed to happen at fixed values of the intensive parameters (such as pressure, temperature, etc.) characterizing their properties. It is also considered that the extensive properties of the phases (such as entropy, volume, etc.) have discontinuities at the transition point, but that for each phase the intensive parameters remain constant during the transition. These features are a hallmark for systems described by two thermodynamic degrees of freedom. In this work it is shown that first order phase transitions must be understood in the broader framework of thermodynamic systems described by three or more degrees of freedom. This means that the transitions occur along intervals of the intensive parameters, that the properties of the phases coexisting during the transition may show peculiar behaviors characteristic of each system, and that a generalized Clausius,Clapeyron equation must be obeyed. These features for the magnetic case are confirmed, and it is shown that experimental calorimetric data agree well with the magnetic Clausius,Clapeyron equation for MnAs. An estimate for the point in the temperature-field plane where the first order magnetic transition turns to a second order one is obtained (the critical parameters) for MnAs and Gd5Ge2Si2 compounds. Anomalous behavior of the volumes of the coexisting phases during the magnetic first order transition is measured, and it is shown that the anomalies for the individual phases are hidden in the behavior of the global properties as the volume. [source] Synthesis, structural and thermal studies of tetrathioureacopper(I) chloride crystalsCRYSTAL RESEARCH AND TECHNOLOGY, Issue 8 2005M. Dhandapani Abstract Tetrathioureacopper(I) chloride, hereafter abbreviated as TCC, was synthesised and single crystals were obtained from saturated aqueous solution by slow evaporation (solution growth) method at room temperature. The crystals obtained are bright, colourless and transparent having well defined external faces. The grown crystals were characterized through elemental analysis, single crystal X-ray diffraction study, thermal analysis, electron spin resonance spectroscopy and Fourier Transform infrared spectroscopy. The elemental analysis confirms the stoichiometry of the compound. The single crystal diffraction studies indicate that TCC crystallises in the tetragonal lattice and the unit cell parameters are a = b = 13.4082 Å, c = 13.8074 Å, V = 2482.29 Å3, , = , = , = 90°. Space group and the number of molecules per unit cell (Z) are found to be P41212 and 8 respectively. The TG curve of the sample shows a prolonged decomposition from 210 to 628.3 °C, from which the decomposition pattern has been formulated. The endothermic peaks in the DTA curve indicate melting and decomposition of the compound at 165.2 and 633.8 °C respectively. An exothermic peak in high temperature DSC indicates a phase transition in the compound at 274.8 °C. Thermal anomalies observed in the low temperature DSC at ,163.3, ,152.0, ,141.5, ,108.3, 1.0 and 12.1 °C in the heating run and ,157.1 and ,153.9 °C in the cooling run reveal first order phase transitions in the crystal. The peaks observed at ,146.2 °C in both the heating and cooling runs suggest occurrence of a second order phase transition in this compound. The IR spectroscopic data were used to assign the characteristic vibrational frequencies of various groups present in the compound. The ESR study confirms that the copper is in the +1 oxidation state in the complex. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Generalizations of the AdS/CFT correspondence,FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 8 2004I. Kirsch Abstract We consider generalizations of the AdS/CFT correspondence in which probe branes are embedded in gravity backgrounds dual to either conformal or confining gauge theories. These correspond to defect conformal field theories (dCFT) or QCD-like theories with fundamental matter, respectively. Moreover, starting from the dCFT we discuss the deconstruction of intersecting M5-branes and M-theory. We obtain the following results: i) Holography of defect conformal field theories. We consider holography for a general D3-Dp brane intersection in type IIB string theory (p , {3,5,7}). The corresponding near-horizon geometry is given by a probe AdS-brane in AdS5 × S5. The dual defect conformal field theory describes ,, = 4 super Yang-Mills degrees of freedom coupled to fundamental matter on a lower-dimensional space-time defect. We derive the spectrum of fluctuations about the brane embedding and determine the behaviour of correlation functions involving defect operators. We also study the dual conformal field theory in the case of intersecting D3-branes. To this end, we develop a convenient superspace approach in which both two- and four-dimensional fields are described in a two-dimensional (2,2) superspace. We show that quantum corrections vanish to all orders in perturbation theory, such that the theory remains a (defect) conformal field theory when quantized. ii) Flavour in generalized AdS/CFT dualities. We present a holographic non-perturbative description of QCD-like theories with a large number of colours by embedding D7-brane probes into two non-supersymmetric gravity backgrounds. Both backgrounds exhibit confinement of fundamental matter and a discrete glueball and meson spectrum. We numerically compute the quark condensate and meson spectrum associated with these backgrounds. In the first background, we find some numerical evidence for a first order phase transition at a critical quark mass where the D7 embedding undergoes a geometric transition. In the second, we find a chiral symmetry breaking condensate as well as the associated Goldstone boson. iii) Deconstruction of extra dimensions. We apply the deconstruction method to the dCFT of intersecting D3-branes to obtain a field theory description for intersecting M5-branes. The resulting theory corresponds to two six-dimensional (2,0) superconformal field theories which we show to have tensionless strings on their four-dimensional intersection. Moreover, we argue that the SU(2)L R-symmetry of the dCFT matches the manifest SU(2) R-symmetry of the M5-M5 intersection. We finally explore the fascinating idea of deconstructing M-theory itself. We give arguments for an equivalence of M-theory on a certain background with the Higgs branch of a four-dimensional non-supersymmetric (quiver) gauge theory: in addition to a string theoretical motivation, we find wrapped M2-branes in the mass spectrum of the quiver theory at low energies. [source] Synthesis, structural and thermal studies of tetrathioureacopper(I) chloride crystalsCRYSTAL RESEARCH AND TECHNOLOGY, Issue 8 2005M. Dhandapani Abstract Tetrathioureacopper(I) chloride, hereafter abbreviated as TCC, was synthesised and single crystals were obtained from saturated aqueous solution by slow evaporation (solution growth) method at room temperature. The crystals obtained are bright, colourless and transparent having well defined external faces. The grown crystals were characterized through elemental analysis, single crystal X-ray diffraction study, thermal analysis, electron spin resonance spectroscopy and Fourier Transform infrared spectroscopy. The elemental analysis confirms the stoichiometry of the compound. The single crystal diffraction studies indicate that TCC crystallises in the tetragonal lattice and the unit cell parameters are a = b = 13.4082 Å, c = 13.8074 Å, V = 2482.29 Å3, , = , = , = 90°. Space group and the number of molecules per unit cell (Z) are found to be P41212 and 8 respectively. The TG curve of the sample shows a prolonged decomposition from 210 to 628.3 °C, from which the decomposition pattern has been formulated. The endothermic peaks in the DTA curve indicate melting and decomposition of the compound at 165.2 and 633.8 °C respectively. An exothermic peak in high temperature DSC indicates a phase transition in the compound at 274.8 °C. Thermal anomalies observed in the low temperature DSC at ,163.3, ,152.0, ,141.5, ,108.3, 1.0 and 12.1 °C in the heating run and ,157.1 and ,153.9 °C in the cooling run reveal first order phase transitions in the crystal. The peaks observed at ,146.2 °C in both the heating and cooling runs suggest occurrence of a second order phase transition in this compound. The IR spectroscopic data were used to assign the characteristic vibrational frequencies of various groups present in the compound. The ESR study confirms that the copper is in the +1 oxidation state in the complex. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] A General Approach to First Order Phase Transitions and the Anomalous Behavior of Coexisting Phases in the Magnetic CaseADVANCED FUNCTIONAL MATERIALS, Issue 6 2009Sergio Gama Abstract First order phase transitions for materials with exotic properties are usually believed to happen at fixed values of the intensive parameters (such as pressure, temperature, etc.) characterizing their properties. It is also considered that the extensive properties of the phases (such as entropy, volume, etc.) have discontinuities at the transition point, but that for each phase the intensive parameters remain constant during the transition. These features are a hallmark for systems described by two thermodynamic degrees of freedom. In this work it is shown that first order phase transitions must be understood in the broader framework of thermodynamic systems described by three or more degrees of freedom. This means that the transitions occur along intervals of the intensive parameters, that the properties of the phases coexisting during the transition may show peculiar behaviors characteristic of each system, and that a generalized Clausius,Clapeyron equation must be obeyed. These features for the magnetic case are confirmed, and it is shown that experimental calorimetric data agree well with the magnetic Clausius,Clapeyron equation for MnAs. An estimate for the point in the temperature-field plane where the first order magnetic transition turns to a second order one is obtained (the critical parameters) for MnAs and Gd5Ge2Si2 compounds. Anomalous behavior of the volumes of the coexisting phases during the magnetic first order transition is measured, and it is shown that the anomalies for the individual phases are hidden in the behavior of the global properties as the volume. [source] |