Home About us Contact | |||
Orexigenic Peptide (orexigenic + peptide)
Selected AbstractsOrexigenic Peptides and Alcohol Intake: Differential Effects of Orexin, Galanin, and GhrelinALCOHOLISM, Issue 11 2007Eve R. Schneider Background:, The question is which hypothalamic systems for food intake might play a role in ethanol intake and contribute to alcohol abuse. The peptide orexin was found to exhibit similar properties to galanin in its relation to dietary fat and may therefore be similar to galanin in having a stimulatory effect on alcohol intake. Methods:, Rats were trained to drink 10% ethanol, implanted with brain cannulas, and then injected in the paraventricular nucleus (PVN), lateral hypothalamus (LH), or nucleus accumbens (NAc) with galanin, orexin-A, and for comparison, ghrelin. Ethanol, food, and water intake were measured at 1, 2, and 4 hours postinjection. Results:, In the PVN, both orexin and galanin significantly increased ethanol intake, whereas ghrelin increased food intake. In the LH, orexin again induced ethanol intake, while ghrelin increased eating. In the NAc, orexin failed to influence ethanol intake but did stimulate food intake. Conclusions:, In ethanol-drinking rats, injection of orexin or galanin into the appropriate locus in the hypothalamus induced significant ethanol intake instead of food intake. Ghrelin, as a positive control, failed to influence ethanol intake at the same hypothalamic sites. In the NAc, as an anatomical control, orexin augmented eating but not ethanol intake. Thus orexin and galanin in the hypothalamus selectively stimulated ethanol intake at sites where other studies have shown that both ethanol and fat increase expression of the endogenous peptides. Thus, a neural circuit that evolved with the capability to augment food intake is apparently co-opted by ethanol and may serve as a potential positive feedback circuit for alcohol abuse. [source] Short-Days Induce Weight Loss in Siberian Hamsters Despite Overexpression of the Agouti-Related Peptide GeneJOURNAL OF NEUROENDOCRINOLOGY, Issue 6 2010P. H. Jethwa Many vertebrates express profound annual cycles of body fattening, although it is not clear whether these represent differential activity of the central pathways known to mediate homeostatic control of food intake and energy expenditure, or whether the recent discovery of a major role for pars tuberalis-ependymal signalling points towards novel mechanisms. We examined this in the Siberian hamster (Phodopus sungorus) by using gene transfection to up-regulate a major orexigenic peptide, agouti-related peptide (AgRP), and then determined whether this increased anabolic drive could prevent the short-day induced winter catabolic state. Infusions of a recombinant adeno-associated virus encoding an AgRP construct into the hypothalamus of hamsters in the long-day obese phase of their seasonal cycle produced a 20% gain in body weight over 6 weeks compared to hamsters receiving a control reporter construct, reflecting a significant increase in food intake and a significant decrease in energy expenditure. However, all hamsters showed a significant, prolonged decrease in body weight when exposed to short photoperiods, despite the hamsters expressing the AgRP construct maintaining a higher food intake and lower energy expenditure relative to the control hamsters. Visualisation of the green fluorescent protein reporter and analysis of AgRP-immunoreactivity confirmed widespread expression of the construct in the hypothalamus, which was maintained for the 21-week duration of the study. In conclusion, the over-expression of AgRP in the hypothalamus produced a profoundly obese state but did not block the seasonal catabolic response, suggesting a separation of rheostatic mechanisms in seasonality from those maintaining homeostasis of energy metabolism. [source] Increased plasma ghrelin following infliximab in Crohn's diseaseALIMENTARY PHARMACOLOGY & THERAPEUTICS, Issue 1 2009E. Z. H. SUNG Summary Background, Ghrelin, a potent orexigenic peptide produced by the stomach, may be affected by circulating inflammatory mediators. Aim, To assess the effect of an anti-TNF, antibody on ghrelin in patients with Crohn's disease (CD). Methods, Fifteen patients with Crohn's receiving infliximab were studied before and 1 week after infusion. Following an overnight fast, blood was sampled before a meal and then every 20 min for 2 h. Total ghrelin and CRP were measured using ELISA. Acylated ghrelin and TNF,, IFN,, IL-1, and IL-6 were measured with bioplex. Harvey Bradshaw Activity Index was assessed. Results, Median (95% CI) 2-h integrated plasma total ghrelin increased from 162 (99,311) before infliximab to 200 (128,387) pg/mL h, (P = 0.02) after. Following infliximab, 20 min postmeal, median acylated ghrelin decreased from 50.3 (24,64) to 38.6 (26,82) pg/mL, (P = 0.04) thus reverting to a traditional meal related ghrelin curve. Median (range) disease activity decreased from 5 (2,28) before to 3 (0,22), (P = 0.0001) and Median (95% CI) TNF, decreased from 2.8 (1.89,4.48) to 1.31 (0.73,2.06) pg/mL (P = 0.002). Conclusions, Infliximab increases circulating total ghrelin by 25% in CD and restores the postprandial response of acylated ghrelin to food intake. Acylated and de-sacyl ghrelin remain unchanged, suggesting that an alternate isoform could be affected by infliximab. [source] Endogenous and exogenous ghrelin enhance the colonic and gastric manifestations of dextran sodium sulphate-induced colitis in miceNEUROGASTROENTEROLOGY & MOTILITY, Issue 1 2009B. De Smet Abstract, Ghrelin is an important orexigenic peptide that not only exerts gastroprokinetic but also immunoregulatory effects. This study aimed to assess the role of endogenous and exogenous ghrelin in the pathogenesis of colitis and in the disturbances of gastric emptying and colonic contractility during this process. Dextran sodium sulphate colitis was induced for 5 days in (i) ghrelin+/+ and ghrelin,/, mice and clinical and histological parameters were monitored at days 5, 10 and 26 and (ii) in Naval Medical Research Institute non-inbred Swiss (NMRI) mice treated with ghrelin (100 nmol kg,1) twice daily for 5 or 10 days. Neural contractility changes were measured in colonic smooth muscle strips, whereas gastric emptying was measured with the 14C octanoic acid breath test. Inflammation increased ghrelin plasma levels. Body weight loss, histological damage, myeloperoxidase activity and IL-1, levels were attenuated in ghrelin,/, mice. Whereas absence of ghrelin did not affect changes in colonic contractility, gastric emptying in the acute phase was accelerated in ghrelin+/+ but not in ghrelin,/, mice. In agreement with the studies in ghrelin knockout mice, 10 days treatment of NMRI mice with exogenous ghrelin enhanced the clinical disease activity and promoted infiltration of neutrophils and colonic IL-1, levels. Unexpectedly, ghrelin treatment decreased excitatory and inhibitory neural responses in the colon of healthy but not of inflamed NMRI mice. Endogenous ghrelin enhances the course of the inflammatory process and is involved in the disturbances of gastric emptying associated with colitis. Treatment with exogenous ghrelin aggravates colitis, thereby limiting the potential therapeutic properties of ghrelin during intestinal inflammation. [source] Roles of Corticotropin-Releasing Factor, Neuropeptide Y and Corticosterone in the Regulation of Food Intake In Xenopus laevisJOURNAL OF NEUROENDOCRINOLOGY, Issue 3 2004E. J. Crespi Abstract In mammals, hypothalamic control of food intake involves counterregulation of appetite by anorexigenic peptides such as corticotropin-releasing factor (CRF), and orexigenic peptides such as neuropeptide Y (NPY). Glucocorticoids also stimulate food intake by inhibiting CRF while facilitating NPY actions. To gain a better understanding of the diversity and evolution of neuroendocrine feeding controls in vertebrates, we analysed the effects of CRF, NPY and glucocorticoids on food intake in juvenile Xenopus laevis. We also analysed brain CRF and NPY mRNA content and plasma corticosterone concentrations in relation to nutritional state. Intracerebroventricular (i.c.v.) injection of ovine CRF suppressed food intake while CRF receptor antagonist ,helical CRF(9,41) significantly increased food intake relative to uninjected and placebo controls. By contrast, i.c.v. injection of frog NPY and short-term corticosterone treatment increased food intake. Semi-quantitative reverse transcription-polymerase chain reaction analyses showed that CRF and NPY mRNA fluctuated with food intake in the brain region containing the mid-posterior hypothalamus, pretectum, and optic tectum: CRF mRNA decreased 6 h after a meal and remained low through 31 days of food deprivation; NPY mRNA content also decreased 6 h after a meal, but increased to prefeeding levels by 24 h. Plasma corticosterone concentration increased 6 h after a meal, returned to prefeeding levels by 24 h, and did not change with prolonged food deprivation. This postprandial increase in plasma corticosterone may be related to the subsequent increase in plasma glucose and body water content that occurs 24 h postfeeding. Overall, our data support the conclusion that, similar to other vertebrates, CRF is anorexigenic while NPY is orexigenic in X. laevis, and CRF secretion modulates food intake in the absence of stress by exerting an inhibitory tone on appetite. Furthermore, the stress axis is activated in response to food intake, but in contrast to mammals and birds is not activated during periods of food deprivation. [source] Differential Effects of Acute and Chronic Ethanol Exposure on Orexin Expression in the Perifornical Lateral HypothalamusALCOHOLISM, Issue 5 2010Irene Morganstern Background:, Recent reports support the involvement of hypothalamic orexigenic peptides in stimulating ethanol intake. Our previous studies have examined the effects of ethanol on hypothalamic peptide systems of the paraventricular nucleus (PVN) and identified a positive feedback loop in which PVN peptides, such as enkephalin and galanin, stimulate ethanol intake and ethanol, in turn, stimulates the expression of these peptides. Recently, orexin (OX), a peptide produced mainly by cells in the perifornical lateral hypothalamus (PFLH), has been shown to play an important role in mediating the rewarding aspects of ethanol intake. However, there is little evidence showing the effects that ethanol itself may have on the OX peptide system. In order to understand the feedback relationship between ethanol and the OX system, the current investigation was designed to measure OX gene expression in the PFLH following acute as well as chronic ethanol intake. Methods:, In the first experiment, Sprague,Dawley rats were trained to voluntarily consume a 2 or 9% concentration of ethanol, and the expression of OX mRNA in the PFLH was measured using quantitative real-time polymerase chain reaction (qRT-PCR). The second set of experiments tested the impact of acute oral gavage of 0.75 and 2.5 g/kg ethanol solution on OX expression in the PFLH using qRT-PCR, as well as radiolabeled in situ hybridization. Further tests using digoxigenin-labeled in situ hybridization and immunofluorescence histochemistry allowed us to more clearly distinguish the effects of acute ethanol on OX cells in the lateral hypothalamic (LH) versus perifornical (PF) regions. Results:, The results showed chronic consumption of ethanol versus water to dose-dependently reduce OX mRNA in the PFLH, with a larger effect observed in rats consuming 2.5 g/kg/d (,70%) or 1.0 g/kg/d (,50%) compared to animals consuming 0.75 g/kg/d (,40%). In contrast to chronic intake, acute oral ethanol compared to water significantly enhanced OX expression in the PFLH, and this effect occurred at the lower (0.75 g/kg) but not higher (2.5 g/kg) dose of ethanol. Additional analyses of the OX cells in the LH versus PF regions identified the former as the primary site of ethanol's stimulatory effect on the OX system. In the LH but not the PF, acute ethanol increased the density of OX-expressing and OX-immunoreactive neurons. The increase in gene expression was detected only at the lower dose of ethanol (0.75 g/kg), whereas the increase in OX peptide was seen only at the higher dose of ethanol (2.5 g/kg). Conclusion:, These results lead us to propose that OX neurons, while responsive to negative feedback signals from chronic ethanol consumption, are stimulated by acute ethanol administration, most potently in the LH where OX may trigger central reward mechanisms that promote further ethanol consumption. [source] |