Open-top Chambers (open-top + chamber)

Distribution by Scientific Domains


Selected Abstracts


Quantifying root lateral distribution and turnover using pine trees with a distinct stable carbon isotope signature

FUNCTIONAL ECOLOGY, Issue 1 2005
K. JOHNSEN
Summary 1In order to help assess spatial competition for below-ground resources, we quantified the effects of fertilization on root biomass quantity and lateral root distribution of mid-rotation Pinus taeda trees. Open-top chambers exposed trees to ambient or ambient plus 200 µmol mol,1 atmospheric CO2 for 31 months. 2Tank CO2 was depleted in atmospheric 13C; foliage of elevated CO2 trees had ,13C of ,42·9, compared with ,29·1 for ambient CO2 trees. 3Roots 1 m from the base of elevated CO2 -grown trees had more negative ,13C relative to control trees, and this difference was detected, on average, up to 5·8, 3·7 and 3·7 m away from the trees for 0,2, 2,5 and >5 mm root-size classes, respectively. Non-fertilized tree roots extended as far as fertilized trees despite the fact that their above-ground biomass was less than half that of fertilized trees. 4These results are informative with respect to root sampling intensity and protocol, and the distances required between experimental manipulations to evaluate below-ground processes of independent treatments. 5Fine-root turnover has usually been estimated to range from weeks to 3 years, representing a major avenue of carbon flux. Using a mixing model we calculated that 0,2 mm roots had a mean residence time of 4·5 years indicating relatively slow fine-root turnover, a result that has major implications in modelling C cycling. [source]


Carbon dioxide assimilation by a wetland sedge canopy exposed to ambient and elevated CO2: measurements and model analysis

FUNCTIONAL ECOLOGY, Issue 2 2003
D. P. Rasse
Summary 1The wetland sedge Scirpus olneyi Gray displays fast rates of CO2 assimilation and responds positively to increased atmospheric CO2 concentration. The present study was aimed at identifying the ecophysiological traits specific to S. olneyi that drive these CO2 -assimilation patterns under ambient and elevated CO2 conditions. 2The net ecosystem exchange (NEE) of CO2 between S. olneyi communities and the atmosphere was measured in open-top chambers. 3We developed a new mechanistic model for S. olneyi communities based on published ecophysiological data and additional measurements of photosynthetic parameters. 4Our NEE measurements confirmed that S. olneyi communities have a high rate of summertime CO2 assimilation, with noontime peaks reaching 40 µmol CO2 m,2 ground s,1 on productive summer days, and that elevated CO2 increased S. olneyi CO2 assimilation by c. 35,40%. 5Using S. olneyi -specific ecophysiological parameters, comparison with measured NEE showed that the model accurately simulated these high rates of CO2 uptake under ambient or elevated CO2. 6The model pointed to the Rubisco capacity of Scirpus leaves associated with their high total nitrogen content as the primary explanation for the high rates of CO2 assimilation, and indicated that the vertical-leaf canopy structure of S. olneyi had comparatively little influence on CO2 assimilation. [source]


Variable sensitivity of plant communities in Iceland to experimental warming

GLOBAL CHANGE BIOLOGY, Issue 4 2005
Ingibjörg S. Jónsdóttir
Abstract Facing an increased threat of rapid climate change in cold-climate regions, it is important to understand the sensitivity of plant communities both in terms of degree and direction of community change. We studied responses to 3,5 years of moderate experimental warming by open-top chambers in two widespread but contrasting tundra communities in Iceland. In a species-poor and nutrient-deficient moss heath, dominated by Racomitrium lanuginosum, mean daily air temperatures at surface were 1,2°C higher in the warmed plots than the controls whereas soil temperatures tended to be lower in the warmed plots throughout the season. In a species-rich dwarf shrub heath on relatively rich soils at a cooler site, dominated by Betula nana and R. lanuginosum, temperature changes were in the same direction although more moderate. In the moss heath, there were no detectable community changes while significant changes were detected in the dwarf shrub heath: the abundance of deciduous and evergreen dwarf shrubs significantly increased (>50%), bryophytes decreased (18%) and canopy height increased (100%). Contrary to some other studies of tundra communities, we detected no changes in species richness or other diversity measures in either community and the abundance of lichens did not change. It is concluded that the sensitivity of Icelandic tundra communities to climate warming varies greatly depending on initial conditions in terms of species diversity, dominant species, soil and climatic conditions as well as land-use history. [source]


Elevated atmospheric CO2 effects on biomass production and soil carbon in conventional and conservation cropping systems

GLOBAL CHANGE BIOLOGY, Issue 4 2005
Stephen A. Prior
Abstract Increasing atmospheric CO2 concentration has led to concerns about potential effects on production agriculture as well as agriculture's role in sequestering C. In the fall of 1997, a study was initiated to compare the response of two crop management systems (conventional and conservation) to elevated CO2. The study used a split-plot design replicated three times with two management systems as main plots and two CO2 levels (ambient=375 ,L L,1 and elevated CO2=683 ,L L,1) as split-plots using open-top chambers on a Decatur silt loam (clayey, kaolinitic, thermic Rhodic Paleudults). The conventional system was a grain sorghum (Sorghum bicolor (L.) Moench.) and soybean (Glycine max (L.) Merr.) rotation with winter fallow and spring tillage practices. In the conservation system, sorghum and soybean were rotated and three cover crops were used (crimson clover (Trifolium incarnatum L.), sunn hemp (Crotalaria juncea L.), and wheat (Triticum aestivum L.)) under no-tillage practices. The effect of management on soil C and biomass responses over two cropping cycles (4 years) were evaluated. In the conservation system, cover crop residue (clover, sunn hemp, and wheat) was increased by elevated CO2, but CO2 effects on weed residue were variable in the conventional system. Elevated CO2 had a greater effect on increasing soybean residue as compared with sorghum, and grain yield increases were greater for soybean followed by wheat and sorghum. Differences in sorghum and soybean residue production within the different management systems were small and variable. Cumulative residue inputs were increased by elevated CO2 and conservation management. Greater inputs resulted in a substantial increase in soil C concentration at the 0,5 cm depth increment in the conservation system under CO2 -enriched conditions. Smaller shifts in soil C were noted at greater depths (5,10 and 15,30 cm) because of management or CO2 level. Results suggest that with conservation management in an elevated CO2 environment, greater residue amounts could increase soil C storage as well as increase ground cover. [source]


C3 grasses have higher nutritional quality than C4 grasses under ambient and elevated atmospheric CO2

GLOBAL CHANGE BIOLOGY, Issue 9 2004
Raymond V. Barbehenn
Abstract Grasses with the C3 photosynthetic pathway are commonly considered to be more nutritious host plants than C4 grasses, but the nutritional quality of C3 grasses is also more greatly impacted by elevated atmospheric CO2 than is that of C4 grasses; C3 grasses produce greater amounts of nonstructural carbohydrates and have greater declines in their nitrogen content than do C4 grasses under elevated CO2. Will C3 grasses remain nutritionally superior to C4 grasses under elevated CO2 levels? We addressed this question by determining whether levels of protein in C3 grasses decline to similar levels as in C4 grasses, and whether total carbohydrate : protein ratios become similar in C3 and C4 grasses under elevated CO2. In addition, we tested the hypothesis that, among the nonstructural carbohydrates in C3 grasses, levels of fructan respond most strongly to elevated CO2. Five C3 and five C4 grass species were grown from seed in outdoor open-top chambers at ambient (370 ppm) or elevated (740 ppm) CO2 for 2 months. As expected, a significant increase in sugars, starch and fructan in the C3 grasses under elevated CO2 was associated with a significant reduction in their protein levels, while protein levels in most C4 grasses were little affected by elevated CO2. However, this differential response of the two types of grasses was insufficient to reduce protein in C3 grasses to the levels in C4 grasses. Although levels of fructan in the C3 grasses tripled under elevated CO2, the amounts produced remained relatively low, both in absolute terms and as a fraction of the total nonstructural carbohydrates in the C3 grasses. We conclude that C3 grasses will generally remain more nutritious than C4 grasses at elevated CO2 concentrations, having higher levels of protein, nonstructural carbohydrates, and water, but lower levels of fiber and toughness, and lower total carbohydrate : protein ratios than C4 grasses. [source]


Acclimation of photosynthesis and respiration to elevated atmospheric CO2 in two Scrub Oaks

GLOBAL CHANGE BIOLOGY, Issue 4 2002
Graham J. Hymus
Abstract For two species of oak, we determined whether increasing atmospheric CO2 concentration (Ca) would decrease leaf mitochondrial respiration (R) directly, or indirectly owing to their growth in elevated Ca, or both. In particular, we tested whether acclimatory decreases in leaf-Rubisco content in elevated Ca would decrease R associated with its maintenance. This hypothesis was tested in summer 2000 on sun and shade leaves of Quercus myrtifolia Willd. and Quercus geminata Small. We also measured R on five occasions between summer 1999 and 2000 on leaves of Q. myrtifolia. The oaks were grown in the field for 4 years, in either current ambient or elevated (current ambient + 350 µmol mol,1) Ca, in open-top chambers (OTCs). For Q. myrtifolia, an increase in Ca from 360 to 710 µmol mol,1 had no direct effect on R at any time during the year. In April 1999, R in young Q. myrtifolia leaves was significantly higher in elevated Ca,the only evidence for an indirect effect of growth in elevated Ca. Leaf R was significantly correlated with leaf nitrogen (N) concentration for the sun and shade leaves of both the species of oak. Acclimation of photosynthesis in elevated Ca significantly reduced maximum RuBP-saturated carboxylation capacity (Vc max) for both the sun and shade leaves of only Q. geminata. However, we estimated that only 11,12% of total leaf N was invested in Rubisco; consequently, acclimation in this plant resulted in a small effect on N and an insignificant effect on R. In this study measurements of respiration and photosynthesis were made on material removed from the field; this procedure had no effect on gas exchange properties. The findings of this study were applicable to R expressed either per unit leaf area or unit dry weight, and did not support the hypothesis that elevated Ca decreases R directly, or indirectly owing to acclimatory decreases in Rubisco content. [source]


Response of multiple generations of cotton bollworm Helicoverpa armigera Hübner, feeding on spring wheat, to elevated CO2

JOURNAL OF APPLIED ENTOMOLOGY, Issue 1 2006
G. Wu
Abstract:, The growth, development and consumption of three successive generations of cotton bollworm, Helicoverpa armigera (Hübner), reared on milky grains of spring wheat grown under elevated CO2 (double-ambient vs. ambient) in open-top chambers (OTCs) were examined. Decreases in protein, total amino acid, water and nitrogen content, and increases in total non-structure carbohydrates (TNCs) and ratio of TNC : nitrogen were found in wheat milky grains grown under elevated CO2 conditions. Changes in quality of wheat grains affected the growth, development and food utilization of H. armigera. Significantly longer larval lifespan for the third generation and lower pupal weight for all generations were observed in cotton bollworm fed on milky grains of spring wheat grown under elevated CO2 conditions. Bollworm fecundity was significantly decreased for the second and third generations under elevated CO2 levels. The consumption, frass per larva and relative consumption rate significantly increased in elevated CO2 compared with ambient CO2 conditions. However, the potential population consumption was significant reduced by elevated CO2 in the second and third generations. The results of this study indicate that elevated CO2 levels adversely affect grain quality, resulting in consistently increased consumption per larva for a longer period to produce less fecund bollworm through generations, suggesting that net damage of cotton bollworm on wheat will be less under elevated atmospheric CO2 levels because increased consumption is offset by slower development and reduced fecundity. [source]


Ozone-induced reductions in below-ground biomass: an anatomical approach in potato

PLANT CELL & ENVIRONMENT, Issue 7 2010
AMPARO ASENSI-FABADO
ABSTRACT Potato plants were grown in open-top chambers under three ozone concentrations during two complete cropping seasons (93 and 77 d in 2004 and 2005, respectively). The effects of chronic exposure to ozone on leaf anatomy, cell ultrastructure and crop yield were studied. Severe cell damage was found, even at ambient ozone levels, mainly affecting the spongy parenchyma and areas near the stomata. Damage to the cell wall caused loss of cell contact, and loss of turgor pressure due to tonoplast disintegration, contributed to cell collapse. Phloem sieve plates were obstructed by callose accumulation, and damaged mesophyll cells increased their starch stores. Tuber yield fell sharply (24,44%), due to the biggest tubers becoming smaller, which affected commercial yield. These anatomical findings show the mechanisms of ozone effect on assimilate partitioning, and thus crop yield decrease, in potato. Further implications of ozone causing reductions in below-ground biomass are also discussed. [source]


Differential gene expression in senescing leaves of two silver birch genotypes in response to elevated CO2 and tropospheric ozone

PLANT CELL & ENVIRONMENT, Issue 6 2010
SARI KONTUNEN-SOPPELA
ABSTRACT Long-term effects of elevated CO2 and O3 concentrations on gene expression in silver birch (Betula pendula Roth) leaves were studied during the end of the growing season. Two birch genotypes, clones 4 and 80, with different ozone growth responses, were exposed to 2× ambient CO2 and/or O3 in open-top chambers (OTCs). Microarray analyses were performed after 2 years of exposure, and the transcriptional profiles were compared to key physiological characteristics during leaf senescence. There were genotypic differences in the responses to CO2 and O3. Clone 80 exhibited greater transcriptional response and capacity to alter metabolism, resulting in better stress tolerance. The gene expression patterns of birch leaves indicated contrasting responses of senescence-related genes to elevated CO2 and O3. Elevated CO2 delayed leaf senescence and reduced associated transcriptional changes, whereas elevated O3 advanced leaf senescence because of increased oxidative stress. The combined treatment demonstrated that elevated CO2 only temporarily alleviated the negative effects of O3. Gene expression data alone were insufficient to explain the O3 response in birch, and additional physiological and biochemical data were required to understand the true O3 sensitivity of these clones. [source]


Does soil nitrogen influence growth, water transport and survival of snow gum (Eucalyptus pauciflora Sieber ex Sprengel.) under CO2 enrichment?

PLANT CELL & ENVIRONMENT, Issue 5 2009
BRIAN J. ATWELL
ABSTRACT Eucalyptus pauciflora Sieber ex Sprengel. (snow gum) was grown under ambient (370 µL L,1) and elevated (700 µL L,1) atmospheric [CO2] in open-top chambers (OTCs) in the field and temperature-controlled glasshouses. Nitrogen applications to the soil ranged from 0.1 to 2.75 g N per plant. Trees in the field at high N levels grew rapidly during summer, particularly in CO2 -enriched atmosphere, but suffered high mortality during summer heatwaves. Generally, wider and more numerous secondary xylem vessels at the root,shoot junction in CO2 -enriched trees conferred fourfold higher below-ground hydraulic conductance. Enhanced hydraulic capacity was typical of plants at elevated [CO2] (in which root and shoot growth was accelerated), but did not result from high N supply. However, because high rates of N application consistently made trees prone to dehydration during heatwaves, glasshouse studies were required to identify the effect of N nutrition on root development and hydraulics. While the effects of elevated [CO2] were again predominantly on hydraulic conductivity, N nutrition acted specifically by constraining deep root penetration into soil. Specifically, 15,40% shallower root systems supported marginally larger shoot canopies. Independent changes to hydraulics and root penetration have implications for survival of fertilized trees under elevated atmospheric [CO2], particularly during water stress. [source]


Photosynthetic parameters of birch (Betula pendula Roth) leaves growing in normal and in CO2 - and O3 - enriched atmospheres

PLANT CELL & ENVIRONMENT, Issue 4 2004
H. EICHELMANN
ABSTRACT Two silver birch (Betula pendula Roth) clones K1659 and V5952 were grown in open-top chambers over 3 years (age 7,9 years). The treatments were increased CO2 concentration (+CO2, 72 Pa), increased O3 concentration (+O3, 2 × ambient O3 with seasonal AOT40 up to 28 p.p.m. h) and in combination (+CO2 + O3). Thirty-seven photosynthetic parameters were measured in the laboratory immediately after excising leaves using a computer-operated routine of gas exchange and optical measurements. In control leaves the photosynthetic parameters were close to the values widely used in a model (Farquhar, von Caemmerer and Berry, Planta 149, 78,90, 1980). The distribution of chlorophyll between photosystem II and photosystem I, intrinsic quantum yield of electron transport, uncoupled turnover rate of Cyt b6f, Rubisco specificity and Km (CO2) were not influenced by treatments. Net photosynthetic rate responded to +CO2 with a mean increase of 17% in both clones. Dry weight of leaves increased, whereas protein, especially Rubisco content and the related photosynthetic parameters decreased. Averaged over 3 years, eight and 17 mechanistically independent parameters were significantly influenced by the elevated CO2 in clones K1659 and V5952, respectively. The elevated O3 caused a significant decrease in the average photosynthetic rate of clone V5952, but not of clone K1659. The treatment caused changes in one parameter of clone K1659 and in 11 parameters of clone V5952. Results of the combined treatment indicated that +O3 had less effect in the presence of +CO2 than alone. Interestingly, changes in the same photosynthetic parameters were observed in chamberless grown trees of clone V5952 as under +O3 treatment in chambers, but this was not observed for clone K1659. These results suggest that during chronic fumigation, at concentrations below the threshold of visible leaf injuries, ozone influenced the photosynthetic parameters as a general stress factor, in a similar manner to weather conditions that were more stressful outside the chambers. According to this hypothesis, the sensitivity of a species or a clone to ozone is expected to depend on the growth conditions: the plant is less sensitive to ozone if the conditions are close to optimal and it is more sensitive to ozone under conditions of stress. [source]


Effects of elevated ozone and low light on diurnal and seasonal carbon gain in sugar maple

PLANT CELL & ENVIRONMENT, Issue 7 2001
M. A. Topa
Abstract The long-term interactive effects of ozone and light on whole-tree carbon balance of sugar maple (Acer saccharum Marsh.) seedlings were examined, with an emphasis on carbon acquisition, foliar partitioning into starch and soluble sugars, and allocation to growth. Sugar maple seedlings were fumigated with ambient, 1·7 × ambient and 3·0 × ambient ozone in open-top chambers for 3 years under low and high light (15 and 35% full sunlight, respectively). Three years of ozone fumigation reduced the total biomass of seedlings in the low- and high-light treatments by 64 and 41%, respectively, but had no effect on whole-plant biomass allocation. Ozone had no effect on net photosynthesis until late in the growing season, with low-light seedlings generally exhibiting more pronounced reductions in photosynthesis. The late-season reduction in photosynthesis was not due to impaired stomatal function, but was associated more with accelerated senescence or senescence-like injury. In contrast, the 3·0 × ambient ozone treatment immediately reduced diurnal starch accumulation in leaves by over 50% and increased partitioning of total non-structural carbohydrates into soluble sugars, suggesting that injury repair processes may be maintaining photosynthesis in late spring and early summer at the expense of storage carbon. The results in the present study indicate that changes in leaf-level photosynthesis may not accurately predict the growth response of sugar maple to ozone in different light environments. The larger reduction in seedling growth under low-light conditions suggests that seedlings in gap or closed-canopy environments are more susceptible to ozone than those in a clearing. Similarly, understanding the effects of tropospheric ozone on net carbon gain of a mature tree will require scaling of leaf-level responses to heterogeneous light environments, where some leaves may be more susceptible than others. [source]


Growth responses of African savanna trees implicate atmospheric [CO2] as a driver of past and current changes in savanna tree cover

AUSTRAL ECOLOGY, Issue 4 2010
BARNEY S. KGOPE
Abstract Atmospheric CO2 has more than doubled since the last glacial maximum (LGM) and could double again within this century, largely due to anthropogenic activity. It has been suggested that low [CO2] contributed to reduced tree cover in savanna and grassland biomes at LGM, and that increasing [CO2] over the last century promoted increases in woody plants in these ecosystems over the past few decades. Despite the implications of this idea for understanding global carbon cycle dynamics and key global role of the savanna biome, there are still very few experimental studies quantifying the effects of CO2 on tree growth and demography in savannas and grasslands. In this paper we present photosynthetic, growth and carbon allocation responses of African savanna trees (Acacia karroo and Acacia nilotica) and a C4 grass, Themeda triandra, exposed to a gradient of CO2 concentrations from 180 (typical of LGM) to 1000 µmol mol,1 in open-top chambers in a glasshouse as a first empirical test of this idea. Photosynthesis, total stem length, total stem diameter, shoot dry weight and root dry weight of the acacias increased significantly across the CO2 gradient, saturating at higher CO2 concentrations. After clipping to simulate fire, plants showed an even greater response in total stem length, total stem diameter and shoot dry weight, signalling the importance of re-sprouting following disturbances such as fire or herbivory in savanna systems. Root starch (per unit root mass and total root starch per plant) increased steeply along the CO2 gradient, explaining the re-sprouting response. In contrast to the strong response of tree seedlings to the CO2 gradient, grass productivity showed little variation, even at low CO2 concentrations. These results suggest that CO2 has significant direct effects on tree recruitment in grassy ecosystems, influencing the ability of trees to recover from fire damage and herbivory. Fire and herbivore regimes that were effective in controlling tree increases in grassy ecosystems could thus be much less effective in a CO2 -rich world, but field-based tests are needed to confirm this suggestion. [source]