Open-chest Dogs (open-chest + dog)

Distribution by Scientific Domains


Selected Abstracts


Differential effects of sevoflurane and propofol anesthesia on left ventricular,arterial coupling in dogs

ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 8 2010
Y. L. J. M. DERYCK
Background: General anesthetics interfere with arterial and ventricular mechanical properties, often altering left ventricular,arterial (LVA) coupling. We hypothesized that sevoflurane and propofol alter LVA coupling by different effects on arterial and ventricular properties. Methods: Experiments were conducted in six anesthetized open-chest dogs for the measurement of left ventricular pressure and aortic pressure and flow. Measurements were performed during anesthesia with 0.5, 1.0 and 1.5 minimum alveolar concentration sevoflurane and 12, 24 and 36 mg/kg/h propofol. LVA coupling was assessed as the ratio of ventricular end-systolic elastance (Ees, measuring ventricular contractility) to effective arterial elastance (Ea, measuring ventricular afterload). The steady component of afterload, arterial tone, was assessed by systemic vascular resistance and arterial pressure,flow curves. The pulsatile component of afterload was assessed by aortic impedance and compliance. Results: Sevoflurane decreased aortic pressure and cardiac output more than propofol. Sevoflurane reduced arterial tone, increased arterial stiffness and did not affect wave reflections. It increased Ea, decreased Ees and reduced LVA coupling. Propofol reduced arterial tone, did not affect arterial stiffness and decreased wave reflections. It did not affect Ea, Ees or LVA coupling. Conclusions: Sevoflurane increased ventricular afterload and decreased ventricular performance, thereby altering LVA coupling. Propofol did not affect ventricular afterload or ventricular performance, thereby preserving LVA coupling. Thus, propofol preserves LVA coupling in dogs better, and might be a better choice for patients with compromised left ventricular function. [source]


Characterization of the Acute Cardiac Electrophysiologic Effects of Ethanol in Dogs

ALCOHOLISM, Issue 9 2007
Guilherme Fenelon
Background: Alcohol has been related to atrial fibrillation (holiday heart syndrome), but its electrophysiologic actions remain unclear. Methods: We evaluated the effects of alcohol in 23 anesthetized dogs at baseline and after 2 cumulative intravenous doses of ethanol: first dose 1.5 ml/kg (plasma level 200 mg/dl); second dose 1.0 ml/kg (279 mg/dl). In 13 closed-chest dogs (5 with intact autonomic nervous system, 5 under combined autonomic blockade and 3 sham controls), electrophysiologic evaluation and monophasic action potential (MAP) recordings were undertaken in the right atrium and ventricle. In 5 additional dogs, open-chest biatrial epicardial mapping with 8 bipoles on Bachmann's bundle was undertaken. In the remaining 5 dogs, 2D echocardiograms and ultrastructural analysis were performed. Results: In closed-chest dogs with intact autonomic nervous system, ethanol had no effects on surface electrocardiogram and intracardiac variables. At a cycle length of 300 milliseconds, no effects were noted on atrial and ventricular refractoriness and on the right atrial MAP. These results were not altered by autonomic blockade. No changes occurred in sham controls. In open-chest dogs, ethanol did not affect inter-atrial conduction time, conduction velocity, and wavelength. Atrial arrhythmias were not induced in any dog, either at baseline or after ethanol. Histological and ultrastructural findings were normal but left ventricular (LV) ejection fraction decreased in treated dogs (77 vs. 73 vs. 66%; p = 0.04). Conclusion: Ethanol at medium and high doses depresses LV systolic function but has no effects on atrial electrophysiological parameters. These findings suggest that acute alcoholic intoxication does not directly promote atrial arrhythmias. [source]


The Comparative Effects of Drive and Test Stimulus Intensity on Myocardial Excitability and Vulnerability

PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 1 2000
HOWARD S. FRIEDMAN
The number and intensity of stimuli that set basic cycle length in cardiac electrophysiological studies can influence the electrical properties assessed by extrastimuli. The relative contribution of drive (S1) and test (S2) stimulus intensity in defining myocardial excitability and vulnerability has not been reported. The purpose of this investigation was to assess this interaction and to determine whether a trial and ventricular findings differed. The effects of S1 and S2 intensity on a trial and ventricular stimulus-intensity-refractory-period curves were determined in open-chest dogs: comparisons were made between curves with S1 intensity varied between diastolic threshold (DT) and 10 mA and S2 intensity maintained at DT and those with S, intensity maintained at DT and S2 intensity varied between DT and 10 mA. S1 -S2 was held constant and S1 -S2 varied. The effects of different stimulation sites, cycle length, number of stimulations, and neural blockade were assessed. S3 intensity amplification shifted atrial stimulus-intensity-refractory period curves in the direction of increased excitability and vulnerability; the changes were, more pronounced than those obtained by modulating S2 intensity. The changes produced by increasing S1 intensity were evident at different cycle lengths and were enhanced by an increased number of stimulations, but were not evident when S1 and S2 were delivered at different atrial sites. Although beta-blockade attenuated the effects of increasing S1 intensity somewhat, the addition of cholinergic blockade virtually abolished it. Ventricular refractoriness was also changed by modulation of S1 intensity, but the changes were less striking. In the atrium, modulation of S1 intensity has greater effects of stimulus-intensity-refractory-period relations than modulation ofS2 intensity; in the ventricle, the converse is true. [source]


Modulation of gap junctions by nitric oxide contributes to the anti-arrhythmic effect of sodium nitroprusside?

BRITISH JOURNAL OF PHARMACOLOGY, Issue 5 2009
Márton Gönczi
Background and purpose:, Nitric oxide (NO) donors provide a preconditioning-like anti-arrhythmic protection in the anaesthetized dog. As NO may modulate gap junction (GJ) function, the present study investigated whether this anti-arrhythmic effect is due to a modification of GJs by NO, derived from the NO donor sodium nitroprusside (SNP). Experimental approach:, In chloralose-urethane-anaesthetized, open-chest dogs, either saline (controls; n= 11) or SNP (0.2 µg·kg,1·min,1; n= 10) was infused at a rate of 0.5 mL·min,1 by the intracoronary route. The infusions were started 20 min prior to and maintained throughout the entire 60 min occlusion period of the left anterior descending coronary artery. The severity of ischaemia and of arrhythmias, tissue electrical impedance and permeability, as well as the phosphorylation of connexin43, were assessed. Key results:, Compared with the controls, SNP infusion markedly suppressed the total number of ventricular premature beats (666 ± 202 vs. 49 ± 18; P < 0.05), and the number of ventricular tachycardiac episodes (8.1 ± 2.3 vs. 0.2 ± 0.1; P < 0.05) without significantly modifying the incidence of ventricular tachycardia or ventricular fibrillation. The severity of ischaemia (epicardial ST-segment changes, inhomogeneity of electrical activation) and tissue electrical impedance changes were significantly less in the SNP-treated dogs. SNP improved GJ permeability and preserved the phosphorylated form of connexin43. Conclusion and implications:, The anti-arrhythmic protection resulting from SNP infusion in the anaesthethized dog may, in part, be associated with the modulation of gap junctional function by NO. [source]