Home About us Contact | |||
Opioid Peptides (opioid + peptide)
Kinds of Opioid Peptides Selected AbstractsEffect of Acute Ethanol Administration on the Release of Opioid Peptides From the Midbrain Including the Ventral Tegmental AreaALCOHOLISM, Issue 6 2009Samuel Jarjour Background:, Experimental evidence suggests that ethanol alters the activity of the endogenous opioid peptide systems in a dose and brain-region dependent manner. These alterations may influence the processes of ethanol reward and reinforcement. Thus, it was the objective of this study to investigate the response of the 3 major opioid peptide systems (endorphins, enkephalins, and dynorphins) to acute ethanol administration, at the level of the midbrain including the ventral tegmental area (midbrain/VTA), a region important for drug, including ethanol reinforcement. Methods:, Using the in vivo microdialysis technique coupled with specific solid-phase radioimmunoassay for ,-endorphin, met-enkephalin, and dynorphin A1,8, changes in the extracellular concentration of theses peptides at the level of midbrain/VTA were determined at distinct time points following the administration of 0.0 (saline), 0.8, 1.2, 1.6, 2.0, and 2.4 g ethanol/kg B.Wt. Results:, A biphasic effect of ethanol on ,-endorphin release was found, with low to medium (1.2, 1.6, and 2.0 g) but not high (2.4 g) doses of ethanol, inducing a significant increase in the dialysate content of ,-endorphin. A late increase in the dialysate content of dynorphin A1,8 was observed in response to the 1.2 g ethanol dose. However, none of the ethanol doses tested significantly altered the content of met-enkephalin in the dialysate. Conclusions:, The present findings suggest that the ethanol-induced increase of ,-endorphin release at the level of midbrain/VTA may influence alcohol reinforcement. [source] Effect of Ethanol on Hypothalamic Opioid Peptides, Enkephalin, and Dynorphin: Relationship With Circulating TriglyceridesALCOHOLISM, Issue 2 2007Guo-Qing Chang Background: Recent evidence has demonstrated that ethanol intake can stimulate the expression and production of the feeding-stimulatory peptide, galanin (GAL), in the hypothalamic paraventricular nucleus (PVN), and that PVN injection of this peptide, in turn, can increase the consumption of ethanol. To test the hypothesis that other feeding-related systems are involved in ethanol intake, this study examined the effect of ethanol on the hypothalamic opioid peptides, enkephalin (ENK), and dynorphin (DYN). Method: Adult, male Sprague,Dawley rats were trained to voluntarily drink increasing concentrations of ethanol, up to 9% v/v, on a 12-hour access schedule or were given a single injection of ethanol (10% v/v) versus saline vehicle. The effect of ethanol on GAL, ENK, and DYN mRNA was measured using real-time quantitative polymerase chain reaction and radiolabeled in situ hybridization, while radioimmunoassay was used to measure peptide levels. In addition to blood alcohol, circulating levels of triglycerides (TG), leptin, and insulin were also measured. Results: The data demonstrated that: (1) rats voluntarily drinking 9% v/v ethanol (approximately 2.0 g/kg/d) show a significant increase in GAL, ENK, and DYN mRNA in the PVN compared with water-drinking rats; (2) voluntary consumption of ethanol also increases peptide levels of ENK and DYN in the PVN; (3) acute injection of 10% ethanol (1.0 g/kg of 10% v/v) similarly increases the expression of GAL, ENK, and DYN in the PVN; and (4) ethanol consumption and injection, while having little effect on leptin and insulin, consistently increase circulating levels of TG as well as alcohol, both of which are strongly, positively correlated with peptide expression in the PVN. Conclusions: These findings, together with published studies, suggest a possible role for hypothalamic opioid peptides in the drinking of ethanol. Based on evidence that dietary fat and lipid injections stimulate the PVN peptides and injection of the opiates and GAL increase ethanol intake, it is proposed that both TG and alcohol in the circulation, which are elevated by the ingestion or injection of ethanol, are involved in stimulating these peptides in the PVN, which in turn promote further consumption of ethanol. [source] Paradoxical effects of prodynorphin gene deletion on basal and cocaine-evoked dopaminergic neurotransmission in the nucleus accumbensEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2006V. I. Chefer Abstract Quantitative and conventional microdialysis were used to investigate the effects of constitutive deletion of the prodynorphin gene on basal dopamine (DA) dynamics in the nucleus accumbens (NAc) and the responsiveness of DA neurons to an acute cocaine challenge. Saline- and cocaine-evoked locomotor activity were also assessed. Quantitative microdialysis revealed that basal extracellular DA levels were decreased, while the DA extraction fraction, an indirect measure of DA uptake, was unchanged in dynorphin (DYN) knockout (KO) mice. The ability of cocaine to increase NAc DA levels was reduced in KO. Similarly, cocaine-evoked locomotor activity was decreased in KO. The selective kappa opioid receptor agonist U-69593 decreased NAc dialysate DA levels in wildtype mice and this effect was enhanced in KO. Administration of the selective kappa opioid receptor (KOPr) antagonist nor-binaltorphimine to KO mice attenuated the decrease in cocaine-induced DA levels. However, it was ineffective in altering the decreased locomotor response to cocaine. These studies demonstrate that constitutive deletion of prodynorphin is associated with a reduction of extracellular NAc DA levels and a decreased responsiveness to acute cocaine. Data regarding the effects of U-69593 and nor-binaltorphimine in KO suggest that the kappa opioid receptor is up-regulated as a consequence of prodynorphin gene deletion and that this adaptation underlies the decrease in basal DA dynamics and cocaine-evoked DA levels observed in DYN KO mice. These findings suggest that the phenotype of DYN KO mice is not solely due to loss of endogenous opioid peptide but also reflects developmental compensations that occur at the level of the opioid receptor. [source] Sex Differences in Salivary Cortisol Levels Following Naltrexone Administration,JOURNAL OF APPLIED BIOBEHAVIORAL RESEARCH, Issue 2 2000Laura Cousino Klein Effects of endogenous opioid peptide blockade by naltrexone on salivary Cortisol levels were examined in healthy men (n= 8) and women (n= 6). Participants received naltrexone (100 mg) during one laboratory session and a placebo pill during another session. Drug order was counterbalanced across participants. Saliva samples were collected 24 hr after each pill was administered. Among women, salivary Cortisol levels significantly increased following naltrexone administration compared with a placebo pill. Naltrexone administration did not alter salivary Cortisol levels in men. Results suggest sex differences in neuroendocrine sensitivity to opioid blockade, a finding that may hold significance with regard to the treatment of alcohol addiction with naltrexone. [source] Effect of Chronic Ethanol on Enkephalin in the Hypothalamus and Extra-Hypothalamic AreasALCOHOLISM, Issue 5 2010Guo-Qing Chang Background:, Ethanol may be consumed for reasons such as reward, anxiety reduction, or caloric content, and the opioid enkephalin (ENK) appears to be involved in many of these functions. Previous studies in Sprague,Dawley rats have demonstrated that ENK in the hypothalamic paraventricular nucleus (PVN) is stimulated by voluntary consumption of ethanol. This suggests that this opioid peptide may be involved in promoting the drinking of ethanol, consistent with our recent findings that PVN injections of ENK analogs stimulate ethanol intake. To broaden our understanding of how this peptide functions throughout the brain to promote ethanol intake, we measured, in rats trained to drink 9% ethanol, the expression of the ENK gene in additional brain areas outside the hypothalamus, namely, the ventral tegmental area (VTA), nucleus accumbens shell (NAcSh) and core (NAcC), medial prefrontal cortex (mPFC), and central nucleus of the amygdala (CeA). Methods:, In the first experiment, the brains of rats chronically drinking 1 g/kg/d ethanol, 3 g/kg/d ethanol, or water were examined using real-time quantitative polymerase chain reaction (qRT-PCR). In the second experiment, a more detailed, anatomic analysis of changes in gene expression, in rats chronically drinking 3 g/kg/d ethanol compared to water, was performed using radiolabeled in situ hybridization (ISH). The third experiment employed digoxigenin-labeled ISH (DIG) to examine changes in the density of cells expressing ENK and, for comparison, dynorphin (DYN) in rats chronically drinking 3 g/kg/d ethanol versus water. Results:, With qRT-PCR, the rats chronically drinking ethanol plus water compared to water alone showed significantly higher levels of ENK mRNA, not only in the PVN but also in the VTA, NAcSh, NAcC, and mPFC, although not in the CeA. Using radiolabeled ISH, levels of ENK mRNA in rats drinking ethanol were found to be elevated in all areas examined, including the CeA. The experiment using DIG confirmed this effect of ethanol, showing an increase in density of ENK-expressing cells in all areas studied. It additionally revealed a similar change in DYN mRNA in the PVN, mPFC, and CeA, although not in the NAcSh or NAcC. Conclusions:, While distinguishing the NAc as a site where ENK and DYN respond differentially, these findings lead us to propose that these opioids, in response to voluntary ethanol consumption, are generally elevated in extra-hypothalamic as well as hypothalamic areas, possibly to carry out specific area-related functions that, in turn, drive animals to further consume ethanol. These functions include calorie ingestion in the PVN, reward and motivation in the VTA and NAcSh, response-reinforcement learning in the NAcC, stress reduction in the CeA, and behavioral control in the mPFC. [source] Protective effects of endomorphins, endogenous opioid peptides in the brain, on human low density lipoprotein oxidationFEBS JOURNAL, Issue 6 2006Xin Lin Neurodegenerative disorders are associated with oxidative stress. Low density lipoprotein (LDL) exists in the brain and is especially sensitive to oxidative damage. Oxidative modification of LDL has been implicated in the pathogenesis of neurodegenerative diseases. Therefore, protecting LDL from oxidation may be essential in the brain. The antioxidative effects of endomorphin 1 (EM1) and endomorphin 2 (EM2), endogenous opioid peptides in the brain, on LDL oxidation has been investigated in vitro. The peroxidation was initiated by either copper ions or a water-soluble initiator 2,2,-azobis(2-amidinopropane hydrochloride) (AAPH). Oxidation of the LDL lipid moiety was monitored by measuring conjugated dienes, thiobarbituric acid reactive substances, and the relative electrophoretic mobility. Low density lipoprotein oxidative modifications were assessed by evaluating apoB carbonylation and fragmentation. Endomorphins markedly and in a concentration-dependent manner inhibited Cu2+ and AAPH induced the oxidation of LDL, due to the free radical scavenging effects of endomorphins. In all assay systems, EM1 was more potent than EM2 and l -glutathione, a major intracellular water-soluble antioxidant. We propose that endomorphins provide protection against free radical-induced neurodegenerative disorders. [source] Role of Src in ligand-specific regulation of ,-opioid receptor desensitization and internalizationJOURNAL OF NEUROCHEMISTRY, Issue 1 2009Min-Hua Hong Abstract The opioid receptors are a member of G protein-coupled receptors that mediate physiological effects of endogenous opioid peptides and structurally distinct opioid alkaloids. Although it is well characterized that there is differential receptor desensitization and internalization properties following activation by distinct agonists, the underlying mechanisms remain elusive. We investigated the signaling events of ,-opioid receptor (,OR) initiated by two ligands, DPDPE and TIPP. We found that although both ligands inhibited adenylyl cyclase (AC) and activated ERK1/2, only DPDPE induced desensitization and internalization of the ,OR. We further found that DPDPE, instead of TIPP, could activate GRK2 by phosphorylating the non-receptor tyrosine kinase Src and translocating it to membrane receptors. Activation of GRK2 led to the phosphorylation of serine residues in the C-terminal tail, which facilitates ,-arrestin1/2 membrane translocation. Meanwhile, we also found that DPDPE promoted ,-arrestin1 dephosphorylation in a Src-dependent manner. Thus, DPDPE appears to strengthen ,-arrestin function by dual regulations: promoting ,-arrestin recruitment and increasing ,-arrestin dephosphorylation at the plasma membrane in a Src-dependent manner. All effects initiated by DPDPE could be abolished or suppressed by PP2, an inhibitor of Src. Morphine, which has been previously shown to be unable to desensitize or internalize ,OR, also behaved as TIPP in failure to utilize Src to regulate ,OR signaling. These findings point to the existence of agonist-specific utilization of Src to regulate ,OR signaling and reveal the molecular events by which Src modulates ,OR responsiveness. [source] Opioid Receptor Subtypes Involved in the Regulation of Prolactin Secretion During Pregnancy and LactationJOURNAL OF NEUROENDOCRINOLOGY, Issue 3 2003Z. B. Andrews Abstract Afferent endogenous opioid neuronal systems facilitate prolactin secretion in a number of physiological conditions including pregnancy and lactation, by decreasing tuberoinfundibular dopamine (TIDA) inhibitory tone. The aim of this study was to investigate the opioid receptor subtypes involved in regulating TIDA neuronal activity and therefore facilitating prolactin secretion during early pregnancy, late pregnancy and lactation in rats. Selective opioid receptor antagonists nor-binaltorphimine (, -receptor antagonist, 15 µg/5 µl), beta funaltrexamine (, -receptor antagonist, 5 µg/5 µl) and naltrindole (, -receptor antagonist, 5 µg/5 µl) or saline were administered intracerebroventricularly (i.c.v.) on day 8 of pregnancy during a nocturnal prolactin surge, on day 21 of pregnancy during the ante partum prolactin surge or on day 7 of lactation before the onset of a suckling stimulus. Serial blood samples were collected at regular time intervals, via chronic indwelling jugular cannulae, before and after drug administration and plasma prolactin was determined by radioimmunoassay. TIDA neuronal activity was measured using the 3,4-dihydroxyphenylacetic acid (DOPAC) : dopamine ratio in the median eminence 2 h 30 min after i.c.v. drug injection. In each experimental condition, plasma prolactin was significantly inhibited by both , - and , -receptor antagonists, whereas the , -receptor antagonist had no effect compared to saline-injected controls. Similarly, nor-binaltorphimine and beta funaltrexamine significantly increased the median eminence DOPAC : dopamine ratio during early and late pregnancy, and lactation whereas naltrindole had no effect compared to saline-injected controls. These data suggest that TIDA neuronal activity, and subsequent prolactin secretion, is regulated by endogenous opioid peptides acting at both , - and , -opioid receptors during prolactin surges of early pregnancy, late pregnancy and lactation. [source] Neural Circuits Regulating Pulsatile Luteinizing Hormone Release in the Female Guinea-Pig: Opioid, Adrenergic and Serotonergic InteractionsJOURNAL OF NEUROENDOCRINOLOGY, Issue 3 2001A. C. Gore Abstract We studied three neurotransmitters involved in the regulation of pulsatile luteinizing hormone (LH) release: opioid peptides, serotonin and norepinephrine, using the ovariectomized guinea-pig. This is an attractive animal model due to the regularity of its LH pulses, enabling any disruptions to be clearly ascertained. In all experiments, a specific agonist or antagonist was administered, either alone or serially to enable detection of interactions, and effects on mean LH concentrations, pulse amplitude and interpulse interval were determined by PULSAR analysis. In the ovariectomized guinea-pig, catecholamines are stimulatory (acting through the ,1 and ,2 but not , receptors, unlike other species), opioids inhibitory and serotonin permissively stimulatory to pulsatile LH release. Stimulatory effects of the opiate antagonist were not blocked by pretreatment with an ,1 - or ,2 -adrenergic antagonist. Similarly, pretreatment with the opiate antagonist did not prevent the suppression of LH release by ,1 and ,2 antagonists. This suggests that, in the guinea-pig, effects of opiates and catecholamines on LH release are exerted by independent pathways to luteinizing hormone releasing hormone (LHRH) neurones. For the opiate,serotonin interactions, pretreatment with the serotonergic antagonist did not block the stimulatory effect of the opiate antagonist on LH release. However, pretreatment with the opiate agonist could not be overcome by the serotonergic agonist. This suggests that the effects of the serotonin system on LHRH release may be indirectly mediated by opioid neurones. Taken together, these studies demonstrate that the three neurotransmitter systems studied are critically involved in normal pulsatile LH release in the female guinea-pig, and demonstrate novel functional relationships between the opioid and the adrenergic and serotonergic systems. [source] Synthesis and biological activity of homoarginine-containing opioid peptidesJOURNAL OF PEPTIDE SCIENCE, Issue 1 2007Jan Izdebski Abstract Two tris-alkoxycarbonyl homoarginine derivatives, Boc-Har{,,,,-[Z(2Br)]2}-OH and Boc-Har{,,,,-[Z(2Cl)]2}-OH, were prepared by guanidinylation of Boc-Lys-OH, and used for the synthesis of neo-endorphins and dynorphins. The results were compared with that obtained in the synthesis in which Boc-Lys(Fmoc)-OH was incorporated into the peptide chain, and after removing Fmoc protection, the resulting peptide-resin was guanidinylated with N,N,-[Z(2Br)]2 - or N,N,-[Z(2Cl)]2 - S -methylisourea. The peptides were tested in the guinea-pig ileum (GPI) and mouse vas deferens (MVD) assays. The results indicated that replacement of Arg by Har may be a good avenue for the design of biologically active peptides with increased resistance to degradation by trypsin-like enzymes. Copyright © 2006 European Peptide Society and John Wiley & Sons, Ltd. [source] Probing the shape of a hydrophobic pocket in the active site of , -opioid antagonistsJOURNAL OF PEPTIDE SCIENCE, Issue 7 2001Vincenzo Santagada Abstract The change of selectivity and the induction of antagonism by the insertion of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) in the second position of several opioid peptides have led to the interpretation of Tyr-Tic as a specific message domain for , -opioid antagonists and to the discovery of dipeptides with substantial opioid activity. Selectivity and activity increase enormously when Tyr is substituted by 2,,6,-dimethyl tyrosine (Dmt), hinting that the side chain of Dmt fits a hydrophobic cavity of the receptor very tightly and precisely. We have investigated the specificity of this fit by systematic changes of the substituents on the aromatic ring of Tyr. Mono- and disubstitutions different from 2,,6,- invariably lead to catastrophic decreases of activity. The only substitution compatible with retention of substantial antagonism is 2,-methyl. An analysis of the conformational properties of all analogues reveals that substitutions do not affect the global shape of the molecule significantly. Accordingly, it is possible to use the shape of the different side chains to map the hydrophobic cavity of the receptor. The resulting complementary image is funnel shaped. Copyright © 2001 European Peptide Society and John Wiley & Sons, Ltd. [source] Highly potent side-chain to side-chain cyclized enkephalin analogues containing a carbonyl bridge: synthesis, biology and conformationJOURNAL OF PEPTIDE SCIENCE, Issue 3 2001Danuta Pawlak Abstract Six novel cyclic enkephalin analogues have been synthesized. Cyclization of the linear peptides containing basic amino acid residues in position 2 and 5 was achieved by treatment with bis(4-nitrophenyl)carbonate. It was found that some of the compounds exibit unusually high µ -opioid activity in the guinea pig ileum (GPI) assay. The 18-membered analogue cyclo(N,,N,, -carbonyl-,,-Lys2,Dap5)enkephalinamide turned out to be one of the most potent µ-agonists reported so far. NMR spectra of the peptides were recorded and structural parameters were determined. The conformational space was exhaustively examined for each of them using the electrostatically driven Monte Carlo method. Each peptide was finally described as an ensemble of conformations. A model of the bioactive conformation of this class of opioid peptides was proposed. Copyright © 2001 European Peptide Society and John Wiley & Sons, Ltd. [source] Effect of Ethanol on Hypothalamic Opioid Peptides, Enkephalin, and Dynorphin: Relationship With Circulating TriglyceridesALCOHOLISM, Issue 2 2007Guo-Qing Chang Background: Recent evidence has demonstrated that ethanol intake can stimulate the expression and production of the feeding-stimulatory peptide, galanin (GAL), in the hypothalamic paraventricular nucleus (PVN), and that PVN injection of this peptide, in turn, can increase the consumption of ethanol. To test the hypothesis that other feeding-related systems are involved in ethanol intake, this study examined the effect of ethanol on the hypothalamic opioid peptides, enkephalin (ENK), and dynorphin (DYN). Method: Adult, male Sprague,Dawley rats were trained to voluntarily drink increasing concentrations of ethanol, up to 9% v/v, on a 12-hour access schedule or were given a single injection of ethanol (10% v/v) versus saline vehicle. The effect of ethanol on GAL, ENK, and DYN mRNA was measured using real-time quantitative polymerase chain reaction and radiolabeled in situ hybridization, while radioimmunoassay was used to measure peptide levels. In addition to blood alcohol, circulating levels of triglycerides (TG), leptin, and insulin were also measured. Results: The data demonstrated that: (1) rats voluntarily drinking 9% v/v ethanol (approximately 2.0 g/kg/d) show a significant increase in GAL, ENK, and DYN mRNA in the PVN compared with water-drinking rats; (2) voluntary consumption of ethanol also increases peptide levels of ENK and DYN in the PVN; (3) acute injection of 10% ethanol (1.0 g/kg of 10% v/v) similarly increases the expression of GAL, ENK, and DYN in the PVN; and (4) ethanol consumption and injection, while having little effect on leptin and insulin, consistently increase circulating levels of TG as well as alcohol, both of which are strongly, positively correlated with peptide expression in the PVN. Conclusions: These findings, together with published studies, suggest a possible role for hypothalamic opioid peptides in the drinking of ethanol. Based on evidence that dietary fat and lipid injections stimulate the PVN peptides and injection of the opiates and GAL increase ethanol intake, it is proposed that both TG and alcohol in the circulation, which are elevated by the ingestion or injection of ethanol, are involved in stimulating these peptides in the PVN, which in turn promote further consumption of ethanol. [source] Ultrastructural and immunocytochemical analyses of opioid treatment effects on PC3 prostatic cancer cellsMICROSCOPY RESEARCH AND TECHNIQUE, Issue 3 2004Beatrice Baldelli Abstract Some opioid peptides are able to inhibit the growth of human prostatic cancer cells; in particular, the [D-Ala2,D-Leu5] enkephalin (DADLE) reduces PC3 cell growth. In order to understand how DADLE decreases cell proliferation, we investigated, by electron microscopy, its effects on PC3 cellular components. PC3 cells were incubated with DADLE and processed for both ultrastructural morphology and immunoelectron microscopy. Some cells were incubated with BrU to determine the transcriptional rate. BrU and DADLE molecules were detected by immunogold techniques and the labeling was quantitatively evaluated. Modifications of some cytoplasmic and nuclear components were observed in DADLE-treated cells. Moreover, treated cells incorporated lower amounts of BrU than control cells. DADLE molecules were located in the cytoplasm and in the nucleus, especially on mRNA transcription and early splicing sites. Our data suggest that DADLE is able to slow down the synthetic activity of PC3 cells, perhaps interfering with nuclear functions. Microsc. Res. Tech. 64:243,249, 2004. © 2004 Wiley-Liss, Inc. [source] Modulation of inhibitory neurotransmission in brainstem vagal circuits by NPY and PYY is controlled by cAMP levelsNEUROGASTROENTEROLOGY & MOTILITY, Issue 12 2009K. N. Browning Abstract, Pancreatic polypeptides such as neuropeptide Y (NPY) and peptide YY (PYY) exert profound, vagally mediated effects on gastrointestinal (GI) motility. Vagal efferent outflow to the GI tract is determined principally by tonic GABAergic synaptic inputs onto dorsal motor nucleus of the vagus (DMV) neurons, yet neither peptide modulates GABAergic transmission. We showed recently that opioid peptides appear similarly ineffective because of the low resting cAMP levels. Using whole cell recordings from identified DMV neurons, we aimed to correlate the influence of brainstem cAMP levels with the ability of pancreatic polypeptides to modulate GABAergic synaptic transmission. Neither NPY, PYY, nor the Y1 or Y2 receptor selective agonists [Leu,Pro]NPY or NPY(3-36) respectively, inhibited evoked inhibitory postsynaptic current (eIPSC) amplitude unless cAMP levels were elevated by forskolin or 8-bromo-cAMP, by exposure to adenylate cyclase-coupled modulators such as cholecystokinin octapeptide (sulfated) (CCK-8s) or thyrotropin releasing hormone (TRH), or by vagal deafferentation. The inhibition of eIPSC amplitude by [Leu,Pro]NPY or NPY(3-36) was stable for approximately 30 min following the initial increase in cAMP levels. Thereafter, the inhibition declined gradually until the agonists were again ineffective after 60 min. Analysis of spontaneous and miniature currents revealed that such inhibitory effects were due to actions at presynaptic Y1 and Y2 receptors. These results suggest that, similar to opioid peptides, the effects of pancreatic polypeptides on GABAergic transmission depend upon the levels of cAMP within gastric inhibitory vagal circuits. [source] Cellular interactions between axon terminals containing endogenous opioid peptides or corticotropin-releasing factor in the rat locus coeruleus and surrounding dorsal pontine tegmentumTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 4 2003S.I. Tjoumakaris Abstract Recent evidence suggests that certain stressors release both endogenous opioids and corticotropin-releasing factor (CRF) to modulate activity of the locus coeruleus (LC)-norepinephrine (NE) system. In ultrastructural studies, axon terminals containing methionine5 -enkephalin (ENK) or CRF have been shown to target LC dendrites. These findings suggested the hypothesis that both neuropeptides may coexist in common axon terminals that are positioned to have an impact on the LC. This possibility was examined by using immunofluorescence and immunoelectron microscopic analysis of the rat LC and neighboring dorsal pontine tegmentum. Ultrastructural analysis indicated that CRF- and ENK-containing axon terminals were abundant in similar portions of the neuropil and that approximately 16% of the axon terminals containing ENK were also immunoreactive for CRF. Dually labeled terminals were more frequently encountered in the "core" of the LC vs. its extranuclear dendritic zone, which included the medial parabrachial nucleus (mPB). Triple labeling for ENK, CRF, and tyrosine hydroxylase (TH) showed convergence of opioid and CRF axon terminals with noradrenergic dendrites as well as evidence for inputs to TH-labeled dendrites from dually labeled opioid/CRF axon terminals. One potential source of ENK and CRF in the dorsal pons is the central nucleus of the amygdala (CNA). To determine the relative contribution of ENK and CRF terminals from the CNA, the CNA was electrolytically lesioned. Light-level densitometry revealed robust decreases in CRF immunoreactivity in the LC and mPB on the side ipsilateral to the lesion but little or no change in ENK immunoreactivity, confirming previous studies of the mPB. Degenerating terminals from the CNA in lesioned rats were found to be in direct contact with TH-labeled dendrites. Together, these data indicate that ENK and CRF may be colocalized to a subset of individual axon terminals in the LC "core." The finding that the CNA provides, to dendrites in the area examined, a robust CRF innervation, but little or no opioid innervation, suggests that ENK and CRF axon terminals impacting LC neurons originate from distinct sources and that terminals that colocalize ENK and CRF are not from the CNA. J. Comp. Neurol. 466:445,456, 2003. © 2003 Wiley-Liss, Inc. [source] Reduction of Allodynia by Intrathecal Transplantation of Microencapsulated Porcine Chromaffin CellsARTIFICIAL ORGANS, Issue 3 2009Yu Mi Kim Abstract Bovine chromaffin cells (BCCs) are well known to have analgesic effect to reduce acute or chronic pain when transplanted in the subarachnoid space and have been considered as an alternative therapy for pain management. However, due to recent concerns over risks associated with prion transmission, porcine tissue is considered to be an alternate xenogeneic source for clinical use. In the present study, we investigated whether microencapsulated porcine adrenal medullary chromaffin cells (PCCs) also have analgesic effect to reduce allodynia caused by neuropathic pain in chronic constriction injury model of rat. PCCs were isolated from a porcine adrenal medulla and then microencapsulated with alginate and poly. In in vitro tests, the microencapsulated PCCs were investigated whether they have an ability to release catecholamines responding to nicotine stimulation. The levels of catecholamines released from the microencapsulated PCCs were significantly higher than from microencapsulated BCCs. In addition, the microencapsulated PCCs released catecholamines and met-enkephalin responding to cerebral spinal fluid (CSF) retrieved from a neuropathic pain model. In in vivo tests, implantation of microencapsulated PCCs reduced both mechanical and cold allodynia in chronic constriction injury model of a rat whereas the microencapsulated BCCs reduced only cold allodynia under the same conditions. The injection of antagonist of opioid peptides reversed the reduction of cold allodynia in microencapsulated PCC-received animal. The levels of catecholamines in the CSF of rats after implantation of microencapsulated PCCs were significantly higher than in the control group. These data suggest that microencapsulated PCCs may be another effective source for the treatment of neuropathic pain. [source] Plasma levels of opioid peptides after sunbed exposuresBRITISH JOURNAL OF DERMATOLOGY, Issue 6 2002T. Gambichler Summary Background Previous studies have indicated that solar and artificial ultraviolet (UV) radiation have a positive influence on psychological variables such as mood and emotional state. Circulating opioid peptides have been suggested as being important in this effect. Objectives To investigate in a controlled trial the influence of UVA radiation on opioid peptide levels. Methods We determined plasma levels of ,-endorphin immunoreactive material (IRM) and met-enkephalin in UV-exposed ( n = 35) and non-exposed ( n = 9) healthy volunteers. On the first day of the study, blood samples were taken from the volunteers (time A). UVA irradiation was subsequently administered with an air-conditioned tanning device. During the UV exposures the volunteers wore opaque goggles. Twenty minutes after UV exposure, blood samples were collected again (time B). Within the following 3 weeks the volunteers had a series of five UV exposures. On the last day of the study (24 h after the sixth UV exposure) blood samples were collected (time C). The cumulative UVA doses were 96 J cm ,2 for skin type II and 126 J cm ,2 for skin type III. The controls had no UV exposures. Plasma ,-endorphin IRM and met-enkephalin levels were determined using radioimmunoassays. Results At all times of blood collection (A, B, C), there were no significant differences in plasma levels of ,-endorphin IRM and met-enkephalin between UV-exposed and non-exposed volunteers ( P > 0·05). Conclusions UVA irradiation does not significantly elevate plasma levels of ,-endorphin IRM and met-enkephalin. Therefore we suggest that psychological benefits claimed to occur after UV exposure are unlikely to be mediated by the types of circulating opioid peptides measured in this study. [source] Tolerance develops in spinal cord, but not in brain with chronic [Dmt1]DALDA treatmentBRITISH JOURNAL OF PHARMACOLOGY, Issue 8 2004Yong Ben Previously, we reported that H-2,,6,-dimethyltyrosine [Dmt1]- D -Arg-Phe-Lys-NH2 (DALDA), an analogue of the naturally occurring opioid peptide dermorphin, is a highly potent and selective mu receptor agonist with low cross-tolerance to morphine. In the present study, we investigated the effect of treating mice chronically with [Dmt1]DALDA. The AD50 of [Dmt1]DALDA (s.c.) increased eight-fold in animals given this drug chronically; in contrast, the AD50 increased two-fold in mice chronically treated with morphine. The AD50 of morphine (s.c.) in these [Dmt1]DALDA-treated animals was increased more than 120 times, while that of the more selective , agonist [D -Ala2 -MePhe4 -Gly-ol5]enkephalin (DAMGO) given intrathecally was increased more than 240 times. However, the AD50 of DAMGO given intracerebroventricularly was essentially the same in animals treated chronically with [Dmt1]DALDA as in naïve animals. The dose of naloxone required to precipitate withdrawal in [Dmt1]DALDA-treated animals was 20 times lower than that in morphine-tolerant animals. Using real-time quantitative PCR, we found that expression of the , opioid receptor, , opioid receptor, preproenkephalin and preprodynorphin genes was upregulated in the brain by [Dmt1]DALDA treatment. No significant changes in expression of opioid receptor or opioid peptide genes were detected in the spinal cord of [Dmt1]DALDA-treated mice, nor in the brain or spinal cord of morphine-treated mice. We conclude that a high degree of tolerance to [Dmt1]DALDA develops in the spinal cord but not brain, and cannot be accounted for by changes in expression of opioid receptors or opioid peptides in these tissues. British Journal of Pharmacology (2004) 143, 987,993. doi:10.1038/sj.bjp.0706007 [source] Potent Opioid Peptide Agonists Containing 4,-[N -((4,-phenyl)-phenethyl)carboxamido]phenylalanine (Bcp) in Place of TyrCHEMICAL BIOLOGY & DRUG DESIGN, Issue 5 2008Grazyna Weltrowska Analogues of the opioid peptides H-Tyr-c[d -Cys-Gly-Phe(pNO2)- d -Cys]NH2 (non-selective), H-Tyr- d -Arg-Phe-Lys-NH2 (,-selective) and dynorphin A(1-11)-NH2 (,-selective) containing 4,-[N -((4,-phenyl)-phenethyl)carboxamido]phenylanine (Bcp) in place of Tyr1 were synthesized. All three Bcp1 -opioid peptides retained high , opioid receptor binding affinity, but showed very significant differences in the opioid receptor selectivity profiles as compared with the corresponding Tyr1 -containing parent peptides. The cyclic peptide H-Bcp-c[d -Cys-Gly-Phe(pNO2)- d -Cys]NH2 turned out to be an extraordinarily potent, ,-selective opioid agonist, whereas the Bcp1 -analogue of dynorphin A(1-11)-NH2 displayed partial agonism at the , receptor. The obtained results suggest that the large biphenylethyl substituent contained in these compounds may engage in a hydrophobic interaction with a receptor subsite and thereby may play a role in the ligand's ability to induce a specific receptor conformation or to bind to a distinct receptor conformation in a situation of conformational receptor heterogeneity. [source] |