Only One Allele (only + one_allele)

Distribution by Scientific Domains


Selected Abstracts


USH2A Mutation analysis in 70 Dutch families with Usher syndrome type II,,

HUMAN MUTATION, Issue 2 2004
Ronald J.E. Pennings
Abstract Usher syndrome type II (USH2) is characterised by moderate to severe high-frequency hearing impairment, progressive visual loss due to retinitis pigmentosa and intact vestibular responses. Three loci are known for USH2, however, only the gene for USH2a (USH2A) has been identified. Mutation analysis of USH2A was performed in 70 Dutch USH2 families. Ten mutations in USH2A were detected, of which three are novel, c.949C>A, c.2242C>T (p.Gln748X) and c.4405C>T (p.Gln1468X). Including 9 previously published Dutch USH2a families, estimates of the prevalence of USH2a in the Dutch USH2 population were made. Mutations were identified in 62% of the families. In 28% both mutated alleles were identified, whereas in 34% the mutation in only one allele was found. It is estimated that about 28% of the Dutch USH2 families have a different causative gene. Analysis of deduced haplotypes suggests that c.1256G>T (p.Cys419Phe) is a Dutch ancestral mutation, occurring in 16% of the alleles. © 2004 Wiley-Liss, Inc. [source]


Effect of Rds abundance on cone outer segment morphogenesis, photoreceptor gene expression, and outer limiting membrane integrity

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 6 2007
Rafal Farjo
Abstract We examined the molecular, structural, and functional consequences on cone photoreceptors of the neural retinal leucine zipper knockout (Nrl,/,) mice when only one allele of retinal degeneration slow (Rds) is present (Rds+/,/Nrl,/,). Quantitative RT-PCR and immunoblot analysis were used to assess the expression levels of several phototransduction genes; electroretinography was used to assess quantitatively the retinal responsiveness to light; and immunohistochemistry and ultrastructural analysis were used to examine retinal protein distribution and morphology, respectively. In Rds/Nrl double-null mice, S-cones form dysmorphic outer segments that lack lamellae and fail to associate properly with the cone matrix sheath and the outer limiting membrane. In Rds+/,/Nrl,/, mice, cones form oversized and disorganized outer segment lamellae; although outer limiting membrane associations are maintained, normal interactions with cone matrix sheaths are not, and photoreceptor rosette formation is observed. These retinas produce significantly higher photopic a-wave and b-wave amplitudes than do those of Rds,/,/Nrl,/, mice, and the levels of several cone phototransduction genes are significantly increased coincidently with the presence of Rds and partial lamellae formation. Thus, as in rod photoreceptors, expression of only one Rds allele is unable to support normal outer segment morphogenesis in cones. However, cone lamellae assembly, albeit disorganized, concomitantly permits outer limiting membrane association, and this appears to be linked to photoreceptor rosette formation in the rodless (cone-only) Nrl,/, retina. In addition, photoreceptor gene expression alterations occur in parallel with changes in Rds levels. J. Comp. Neurol. 504:619,630, 2007. © 2007 Wiley-Liss, Inc. [source]


Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants

THE PLANT JOURNAL, Issue 3 2001
Matthieu Chabannes
Summary Different transgenic tobacco lines down-regulated for either one or two enzymes of the monolignol pathway were compared for their lignin content and composition, and developmental patterns. The comparison concerned CCR and CAD down-regulated lines (homozygous or heterozygous for the transgene) and the hybrids resulting from the crossing of transgenic lines individually altered for CCR or CAD activities. Surprisingly, the crosses containing only one allele of each antisense transgene, exhibit a dramatic reduction of lignin content similar to the CCR down-regulated parent but, in contrast to this transgenic line, display a normal phenotype and only slight alterations of the shape of the vessels. Qualitatively the lignin of the double transformant displays characteristics more like the wild type control than either of the other transgenics. In the transgenics with a low lignin content, the transformations induced other biochemical changes involving polysaccharides, phenolic components of the cell wall and also soluble phenolics. These results show that the ectopic expression of a specific transgene may have a different impact depending on the genetic background and suggest that the two transgenes present in the crosses may operate synergistically to reduce the lignin content. In addition, these data confirm that plants with a severe reduction in lignin content may undergo normal development at least in controlled conditions. [source]


The dice of fate: the csd gene and how its allelic composition regulates sexual development in the honey bee, Apis mellifera

BIOESSAYS, Issue 10 2004
Martin Beye
Perhaps 20% of known animal species are haplodiploid: unfertilized haploid eggs developinto males and fertilized diploid eggs into females. Sex determination in such haplodiploid species does not rely on a difference in heteromorphic sex chromosome composition but the genetic basis has been elucidated in some hymenopteran insects (wasps, sawflies, ants, bees). In these species, the development into one sex or the others depends on an initial signal whether there is only one allele or two different alleles of a single gene, the complementary sex determiner (csd), in the zygotic genome. The gene has been most-recently identified in the honey bee and has been found to encode an arginine serine-rich (SR) type protein. Heterozygosity generates an active protein that initiates female development while hemizygosity/homozygosity results in a non-active CSD protein and default male development. I will discuss plausible models of how the molecular decision of male and female is made and implemented. Comparison to hierarchies of dipteran insects suggests that SR-type protein has facilitated the differentiation of sex-determining systems and hierarchies. BioEssays 26:1131,1139, 2004. © 2004 Wiley Periodicals, Inc. [source]


Incorporating Genotype Uncertainty into Mark,Recapture-Type Models For Estimating Abundance Using DNA Samples

BIOMETRICS, Issue 3 2009
Janine A. Wright
Summary Sampling DNA noninvasively has advantages for identifying animals for uses such as mark,recapture modeling that require unique identification of animals in samples. Although it is possible to generate large amounts of data from noninvasive sources of DNA, a challenge is overcoming genotyping errors that can lead to incorrect identification of individuals. A major source of error is allelic dropout, which is failure of DNA amplification at one or more loci. This has the effect of heterozygous individuals being scored as homozygotes at those loci as only one allele is detected. If errors go undetected and the genotypes are naively used in mark,recapture models, significant overestimates of population size can occur. To avoid this it is common to reject low-quality samples but this may lead to the elimination of large amounts of data. It is preferable to retain these low-quality samples as they still contain usable information in the form of partial genotypes. Rather than trying to minimize error or discarding error-prone samples we model dropout in our analysis. We describe a method based on data augmentation that allows us to model data from samples that include uncertain genotypes. Application is illustrated using data from the European badger (Meles meles). [source]