Home About us Contact | |||
Arms Races (arm + races)
Selected AbstractsDo cuckoos choose nests of great reed warblers on the basis of host egg appearance?JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 3 2007M. I. CHERRY Abstract Prevailing theory assumes cuckoos lay at random among host nests within a population, although it has been suggested that cuckoos could choose large nests and relatively active pairs within host populations. We tested the hypothesis that egg matching could be improved by cuckoos choosing nests in which host eggs more closely match their own, by assessing matching and monitoring nest fate in great reed warblers naturally or experimentally parasitized by eggs of European cuckoos. A positive correlation between cuckoo and host egg visual features suggests that cuckoos do not lay at random within a population, but choose nests and this improves egg matching: naturally parasitized cuckoo eggs were more similar to host eggs as perceived by humans and as measured by spectrophotometry. Our results suggest a hitherto overlooked step in cuckoo,host evolutionary arms races, and have nontrivial implications for the common experimental practice of artificially parasitizing clutches. [source] The local introduction of strongly interacting species and the loss of geographic variation in species and species interactionsMOLECULAR ECOLOGY, Issue 1 2008CRAIG W. BENKMAN Abstract Species introductions into nearby communities may seem innocuous, however, these introductions, like long-distance introductions (e.g. trans- and intercontinental), can cause extinctions and alter the evolutionary trajectories of remaining community members. These ,local introductions' can also more cryptically homogenize formerly distinct populations within a species. We focus on several characteristics and the potential consequences of local introductions. First, local introductions are commonly successful because the species being introduced is compatible with existing abiotic and biotic conditions; many nearby communities differ because of historical factors and the absence of certain species is simply the result of barriers to dispersal. Moreover, the species with which they interact most strongly (e.g. prey) may have, for example, lost defences making the establishment even more likely. The loss or absence of defences is especially likely when the absent species is a strongly interacting species, which we argue often includes mammals in terrestrial communities. Second, the effects of the introduction may be difficult to detect because the community is likely to converge onto nearby communities that naturally have the introduced species (hence the perceived innocuousness). This homogenization of formerly distinct populations eliminates the geographic diversity of species interactions and the geographic potential for speciation, and reduces regional species diversity. We illustrate these ideas by focusing on the introduction of tree squirrels into formerly squirrel-less forest patches. Such introductions have eliminated incipient species of crossbills (Loxia spp.) co-evolving in arms races with conifers and will likely have considerable impacts on community structure and ecosystem processes. [source] Begging call matching between a specialist brood parasite and its host: a comparative approach to detect coevolutionBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2009MICHAEL G. ANDERSON Studies of avian brood parasite systems have typically investigated the mimicry of host eggs by specialist parasites. Yet, several examples of similarity between host and parasite chick appearance or begging calls suggest that the escalation of host,parasite arms races may also lead to visual or vocal mimicry at the nestling stage. Despite this, there have been no large-scale comparative studies of begging calls to test whether the similarity of host and parasite is greater than predicted by chance or phylogenetic distance within a geographically distinct species assemblage. Using a survey of the begging calls of all native forest passerines in New Zealand, we show that the begging call of the host-specialist shining cuckoo (Chrysococcyx lucidus) is most similar to that of its grey warbler (Gerygone igata) host compared to any of the other species, and that this is unlikely to have occurred by chance. Randomization tests revealed that the incorporation of the shining cuckoo's begging calls into our species-set consistently reduced the phylogenetic signal within cluster trees based on begging call similarity. By contrast, the removal of the grey warbler calls did not reduce the phylogenetic signal in the begging call similarity trees. These two results support a scenario in which coevolution of begging calls has not taken place: the begging call of the host retains its phylogenetic signal, whereas that of the parasite has changed to match that of its host. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98, 208,216. [source] Pirate ants (Polyergus breviceps) and sympatric hosts (Formica occulta and Formica sp. cf. argentea): host specificity and coevolutionary dynamicsBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2007JEREMY M. BONO The pace and trajectory of coevolutionary arms races between parasites and their hosts are strongly influenced by the number of interacting species. In environments where a parasite has access to more than one host species, the parasite population may become divided in preference for a particular host. In the present study, we show that individual colonies of the pirate ant Polyergus breviceps differ in host preference during raiding, with each colony specializing on only one of two available Formica host species. Moreover, through genetic analyses, we show that the two hosts differ in their colony genetic structure. Formica occulta colonies were monogynous, whereas Formica sp. cf. argentea colonies were polygynous and polydomous (colonies occupy multiple nest sites). This difference has important implications for coevolutionary dynamics in this system because raids against individual nests of polydomous colonies have less impact on overall host colony fitness than do attacks on intact colonies. We also used primers that we designed for four microsatellite loci isolated from P. breviceps to verify that colonies of this species, like other pirate ants, are comprised of simple families headed by one singly mated queen. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 565,572. [source] |