Home About us Contact | |||
One Hemisphere (one + hemisphere)
Selected AbstractsRole of gap junctional coupling in astrocytic networks in the determination of global ischaemia-induced oxidative stress and hippocampal damageEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2006Jose L. Perez Velazquez Abstract While there is evidence that gap junctions play important roles in the determination of cell injuries, there is not much known about mechanisms by which gap junctional communication may exert these functions. Using a global model of transient ischaemia in rats, we found that pretreatment with the gap junctional blockers carbenoxolone, 18,-glycyrrhetinic acid and endothelin, applied via cannulae implanted into the hippocampus in one hemisphere, resulted in decreased numbers of TUNEL-positive neurons, as compared with the contralateral hippocampus that received saline injection. Post-treatment with carbenoxolone for up to 30 min after the stroke injury still resulted in decreased cell death, but post-treatment at 90 min after the ischaemic insult did not result in differences in cell death. However, quinine, an inhibitor of Cx36-mediated gap junctional coupling, did not result in appreciable neuroprotection. Searching for a possible mechanism for the observed protective effects, possible actions of the gap junctional blockers in the electrical activity of the hippocampus during the ischaemic insult were assessed using intracerebral recordings, with no differences observed between the saline-injected and the contralateral drug-injected hippocampus. However, a significant reduction in lipid peroxides, a measure of free radical formation, in the hippocampus treated with carbenoxolone, revealed that the actions of gap junctional coupling during injuries may be causally related to oxidative stress. These observations suggest that coupling in glial networks may be functionally important in determining neuronal vulnerability to oxidative injuries. [source] Coherent corticomuscular oscillations originate from primary motor cortex: Evidence from patients with early brain lesionsHUMAN BRAIN MAPPING, Issue 10 2006Christian Gerloff Abstract Coherent oscillations of neurons in the primary motor cortex (M1) have been shown to be involved in the corticospinal control of muscle activity. This interaction between M1 and muscle can be measured by the analysis of corticomuscular coherence in the ,-frequency range (,-CMCoh; 14,30 Hz). Largely based on magnetoencephalographic (MEG) source-modeling data, it is widely assumed that ,-CMCoh reflects direct coupling between M1 and muscle. Deafferentation is capable of modulating ,-CMCoh, however, and therefore the influence of reafferent somatosensory signaling and corresponding neuronal activity in the somatosensory cortex (S1) has been unclear. We present transcranial magnetic stimulation (TMS) and MEG data from three adult patients suffering from congenital hemiparesis due to pre- and perinatally acquired lesions of the pyramidal tract. In these patients, interhemispheric reorganization had resulted in relocation of M1 to the contralesional hemisphere, ipsilateral to the paretic hand, whereas S1 had remained in the lesioned hemisphere. This topographic dichotomy allowed for an unequivocal topographic differentiation of M1 and S1 with MEG (which is not possible if M1 and S1 are directly adjacent within one hemisphere). In all patients, ,-CMCoh originated from the contralesional M1, in accordance with the TMS-evoked motor responses, and in contrast to the somatosensory evoked fields (SEFs) for which the sources (N20m) were localized in S1 of the lesioned hemisphere. These data provide direct evidence for the concept that ,-CMCoh reflects the motorcortical efferent drive from M1 to the spinal motoneuron pool and muscle. No evidence was found for a relevant contribution of neuronal activity in S1 to ,-CMCoh. Hum Brain Mapp, 2006. © 2006 Wiley-Liss, Inc. [source] Asymmetric Functionalization of Nanoparticles Based on Thermally Addressable DNA Interconnects,ADVANCED MATERIALS, Issue 17 2006F. Huo The synthesis of nanoparticles asymmetrically functionalized with oligonucleotides is reported. The method provides excellent control over the placement of oligonucleotides on the surface of only one hemisphere of each particle (see figure). This new synthetic capability allows one to introduce valency into such structures and then use that valency to direct particle-assembly events. [source] Reperfusion normalizes motor activation patterns in large-vessel disease,ANNALS OF NEUROLOGY, Issue 2 2009Mohamad Chmayssani MD Objective Hemodynamic impairment in one hemisphere has been shown to trigger ipsilateral motor activation in the opposite hemisphere on functional imaging. We hypothesized that reversing the hypoperfusion would normalize the motor activation pattern. Methods We studied four patients with high-grade stenosis and impaired vasomotor reactivity (VMR) but no stroke. Functional magnetic resonance imaging motor activation pattern before and after VMR normalization was compared with seven healthy control subjects scanned at an interval of 3 months using voxel-wise statistical parametric maps and region of interest analysis. Subjects performed a repetitive hand closure task in synchrony with 1Hz metronome tone. We used repeated-measures analysis of variance to compute the interaction between group (patients/control subjects) and time by obtaining the average blood oxygen level dependent signal of three motor regions of interest in each hemisphere. Results Two patients normalized their VMR after spontaneous resolution of dissection, and two after revascularization procedures. Both voxel-wise statistical maps and region of interest analysis showed that VMR normalization was associated in each case with a reduction in the atypical activation in the hemisphere opposite to the previously hypoperfused hemisphere (p < 0.001). Interpretation In the presence of a physiological stressor such as hypoperfusion, the brain is capable of dynamic functional reorganization to the opposite hemisphere that is reversible when normal blood flow is restored. These findings are important to our understanding of the clinical consequences of hemodynamic failure and the role of the ipsilateral hemisphere in maintaining normal neurological function. Ann Neurol 2009;65:203,208 [source] Secular variation of hemispheric phase differences in the solar cycleASTRONOMISCHE NACHRICHTEN, Issue 8 2010N.V. Zolotova Abstract We investigate the phase difference of the sunspot cycles in the two hemispheres and compare it with the latitudinal sunspot distribution. If the north-south phase difference exhibits a long-term tendency, it should not be regarded as a stochastic phenomenon. We use datasets of historical sunspot records and drawings made by Staudacher, Hamilton, Gimingham, Carrington, Spörer, and Greenwich observers, as well as the sunspot activity during the Maunder minimum reconstructed by Ribes and Nesme-Ribes. We employ cross-recurrence plots to analyse north-south phase differences. We show that during the last 300 years, the persistence of phase-leading in one of the hemispheres exhibits a secular variation. Changes from one hemisphere to the other leading in phase were registered near 1928 and 1968 as well as two historical ones near 1783 and 1875. A long-term anticorrelation between the hemispheric phase differences in the sunspot cycles and the latitudinal distribution of sunspots was traced since 1750 (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |