Onthophagus Species (Onthophagu + species)

Distribution by Scientific Domains


Selected Abstracts


RAPID ANTAGONISTIC COEVOLUTION BETWEEN PRIMARY AND SECONDARY SEXUAL CHARACTERS IN HORNED BEETLES

EVOLUTION, Issue 9 2008
Harald F. Parzer
Different structures may compete during development for a shared and limited pool of resources to sustain growth and differentiation. The resulting resource allocation trade-offs have the potential to alter both ontogenetic outcomes and evolutionary trajectories. However, little is known about the evolutionary causes and consequences of resource allocation trade-offs in natural populations. Here, we explore the significance of resource allocation trade-offs between primary and secondary sexual traits in shaping early morphological divergences between four recently separated populations of the horned beetle Onthophagus taurus as well as macroevolutionary divergence patterns across 10 Onthophagus species. We show that resource allocation trade-offs leave a strong signature in morphological divergence patterns both within and between species. Furthermore, our results suggest that genital divergence may, under certain circumstances, occur as a byproduct of evolutionary changes in secondary sexual traits. Given the importance of copulatory organ morphology for reproductive isolation our findings begin to raise the possibility that secondary sexual trait evolution may promote speciation as a byproduct. We discuss the implications of our results on the causes and consequences of resource allocation trade-offs in insects. [source]


WHEN ONTOGENY REVEALS WHAT PHYLOGENY HIDES: GAIN AND LOSS OF HORNS DURING DEVELOPMENT AND EVOLUTION OF HORNED BEETLES

EVOLUTION, Issue 11 2006
Armin P. Moczek
Abstract How ecological, developmental and genetic mechanisms interact in the genesis and subsequent diversification of morphological novelties is unknown for the vast majority of traits and organisms. Here we explore the ecological, developmental, and genetic underpinnings of a class of traits that is both novel and highly diverse: beetle horns. Specifically, we focus on the origin and diversification of a particular horn type, those protruding from the pronotum, in the genus Onthophagus, a particularly speciose and morphologically diverse genus of horned beetles. We begin by documenting immature development of nine Onthophagus species and show that all of these species express pronotal horns in a developmentally transient fashion in at least one or both sexes. Similar to species that retain their horns to adulthood, transient horns grow during late larval development and are clearly visible in pupae. However, unlike species that express horns as adults, transient horns are resorbed during pupal development. In a large number of species this mechanisms allows fully horned pupae to molt into entirely hornless adults. Consequently, far more Onthophagus species appear to possess the ability to develop pronotal horns than is indicated by their adult phenotypes. We use our data to expand a recent phylogeny of the genus Onthophagus to explore how the widespread existence of developmentally transient horns alters our understanding of the origin and dynamics of morphological innovation and diversification in this genus. We find that including transient horn development into the phylogeny dramatically reduces the number of independent origins required to explain extant diversity patters and suggest that pronotal horns may have originated only a few times, or possibly only once, during early Onthophagus evolution. We then propose a new and previously undescribed function for pronotal horns during immature development. We provide histological as well as experimental data that illustrate that pronotal horns are crucial for successful ecdysis of the larval head capsule during the larval-to-pupal molt, and that this molting function appears to be unique to the genus Onthophagus and absent in the other scarabaeine genera. We discuss how this additional function may help explain the existence and maintenance of developmentally transient horns, and how at least some horn types of adult beetles may have evolved as exaptations from pupal structures originally evolved to perform an unrelated function. [source]


Beetle horns are regulated by the Hox gene, Sex combs reduced, in a species- and sex-specific manner

EVOLUTION AND DEVELOPMENT, Issue 4 2010
Bethany R. Wasik
SUMMARY Discovering the mechanisms that underlie the origin of novel features represents a major frontier in developmental and evolutionary biology. Here we begin to characterize the role of the Hox gene Sex combs reduced (Scr) during the development and evolution of a morphologically novel trait: beetle horns. Beetle horns develop as epidermal outgrowths from the prothorax and/or head, and size and location vary dramatically across species and between sexes. Using both comparative gene expression and larval RNA interference in two species of the horned beetle genus Onthophagus, we show that Scr functions in patterning adult labial mouthpart identity and suppressing wing development in the prothorax. At the same time, however, our results illustrate that Scr has acquired, within its ancestral domain of expression, additional new functions including the regulation of prepupal growth and pupal remodeling of pronotal horn primordia. Furthermore, comparative analyses of our results across both Onthophagus species, which differ in location of horn development (thoracic horns vs. thoracic and head horns) as well as patterns of sexual dimorphism (traditional vs. reversed sexual dimorphism), reveal surprising differences in exactly when, where, and to what degree Scr regulates horn formation in different sexes. These observations suggest that the interactions between Scr and its targets in the regulation of horn development can diversify quickly over remarkably short phylogenetic distances. More generally, our results suggest that the Hox complex can play an integral role in the development and evolution of novel complex traits while maintaining traditional patterning responsibilities. [source]


Diverse developmental mechanisms contribute to different levels of diversity in horned beetles

EVOLUTION AND DEVELOPMENT, Issue 3 2005
Armin P. Moczek
Summary An ongoing challenge to evolutionary developmental biology is to understand how developmental evolution on the level of populations and closely related species relates to macroevolutionary transformations and the origin of morphological novelties. Here we explore the developmental basis of beetle horns, a morphological novelty that exhibits remarkable diversity on a variety of levels. In this study, we examined two congeneric Onthophagus species in which males develop into alternative horned and hornless morphs and different sexes express marked sexual dimorphism. In addition, both species differ in the body region (head vs. thorax) that develops the horn. Using a comparative morphological approach we show that prepupal growth of horn primordia during late larval development, as well as reabsorption of horn primordia during the pupal stage, contribute to horn expression in adults. We also show that variable combinations of both mechanisms are employed during development to modify horn expression of different horns in the same individual, the same horn in different sexes, and different horns in different species. We then examine expression patterns of two transcription factors, Distal-less (Dll) and aristaless (al), in the context of prepupal horn growth in alternative male morphs and sexual dimorphisms in the same two species. Expression patterns are qualitatively consistent with the hypothesis that both transcription factors function in the context of horn development similar to their known roles in patterning a wide variety of arthropod appendages. Our results suggest that the origin of morphological novelties, such as beetle horns, rests, at least in part, on the redeployment of already existing developmental mechanisms, such as appendage patterning processes. Our results also suggest, however, that little to no phylogenetic distance is needed for the evolution of very different modifier mechanisms that allow for substantial modulation of trait expression at different time points during development in different species, sexes, or tissue regions of the same individual. We discuss the implications of our results for our understanding of the evolution of horned beetle diversity and the origin and diversification of morphological novelties. [source]