Home About us Contact | |||
Oncostatin M (oncostatin + m)
Selected AbstractsOncostatin M enhances the expression of prostaglandin E2 and cyclooxygenase-2 in astrocytes: Synergy with interleukin-1,, tumor necrosis factor-,, and bacterial lipopolysaccharideGLIA, Issue 4 2003Pavle Repovic Abstract Oncostatin M (OSM), a cytokine of the interleukin-6 family, is expressed in rheumatoid arthritis, multiple sclerosis, multiple myeloma, and other inflammatory and neoplastic conditions. Prostaglandin E2 (PGE2), an eicosanoid also associated with inflammation and cancer, has recently been shown to induce OSM expression. We report here that OSM in turn induces PGE2 production by astrocytes and astroglioma cells. More importantly, in combination with the inflammatory mediators IL-1,, tumor necrosis factor-,, and lipopolysaccharide, OSM exhibits a striking synergy, resulting in up to 50-fold higher PGE2 production by astrocytes, astroglioma, and neuroblastoma cell lines. Enhanced PGE2 production by OSM and IL-1, treatment is explained by their effect on cyclooxygenase-2 (COX-2), an enzyme that catalyzes the committed step in PGE2 synthesis. Of the enzymes involved in PGE2 biosynthesis, only COX-2 mRNA and protein levels are synergistically amplified by OSM and IL-1,. Nuclear run-on assays demonstrate that OSM and IL-1, synergistically upregulate transcription of the COX-2 gene, and the mRNA stability assay indicates that COX-2 mRNA is posttranscriptionally stabilized by OSM and IL-1,. To effect synergy on the PGE2 level, OSM signals in part through its gp130/OSMR, receptor, since neutralizing antibodies against gp130 and OSMR,, but not LIFR,, decrease PGE2 production in response to OSM plus IL-1,. SB202190 and U0126, inhibitors of p38 MAPK and ERK1/2 activation, respectively, inhibit IL-1, and OSM upregulation of COX-2 and PGE2, indicating that these MAPK cascades are utilized by both stimuli. This mechanism of PGE2 amplification may be active in brain pathologies where both OSM and IL-1, are present, such as glioblastomas and multiple sclerosis. GLIA 42:433,446, 2003. © 2003 Wiley-Liss, Inc. [source] Interleukin-4 antagonizes oncostatin M and transforming growth factor beta-induced responses in articular chondrocytesJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2008Mohammed El Mabrouk Abstract Oncostatin M (OSM) stimulates cartilage degradation in rheumatoid arthritis (RA) by inducing matrix metalloproteinases (MMPs) and aggrecanases (ADAMTS; a disintegrin and metalloproteinase with thrombospondin motif). Transforming growth factor beta (TGF-,1) induces cartilage repair in joints but in excessive amounts, promotes inflammation. OSM and TGF-,1 also induce tissue inhibitor of metalloproteinase-3 (TIMP-3), an important natural inhibitor of MMPs, aggrecanases, and tumor necrosis factor alpha converting enzyme (TACE), the principal proteases involved in arthritic inflammation and cartilage degradation. We studied cartilage protective mechanisms of the antiinflammatory cytokine, interleukin-4 (IL-4). IL-4 strongly (MMP-13 and TIMP-3) or minimally (ADAMTS-4) suppressed OSM-induced gene expression in chondrocytes. IL-4 did not affect OSM-stimulated phosphorylation of extracellular signal-regulated kinases (ERKs), protein 38 (p38), c-Jun N-terminal kinase (JNK) and Stat1. Lack of additional suppression with their inhibitors suggested that MMP-13, ADAMTS-4, and TIMP-3 inhibition was independent of these mediators. IL-4 also downregulated TGF-,1-induced TIMP-3 gene expression, Smad2, and JNK phosphorylation. Additional suppression of TIMP-3 RNA by JNK inhibitor suggests JNK implication. The cartilage protective effects of IL-4 in animal models of arthritis may be due to its inhibition of MMPs and ADAMTS-4 expression. However, suppression of TIMP-3 suggests caution for using IL-4 as a cartilage protective therapy. J. Cell. Biochem. 103: 588,597, 2008. © 2007 Wiley-Liss, Inc. [source] Comparative studies of oncostatin M expression in the tissues of adult rodentsTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 1 2005Iya Znoyko Oncostatin M (OSM), a member of the interleukin-6 family of cytokines, is thought to be expressed mostly by activated T-lymphocytes and monocytes in adult animals. However, here we report specific constitutive tissue expression of OSM in the pancreas, kidney, testes, spleen, stomach, and brain, but not liver or lung, of three adult rodent species. © 2005 Wiley-Liss, Inc. [source] Upregulation of Oncostatin M in Allergic RhinitisTHE LARYNGOSCOPE, Issue 12 2005Hee Joon Kang MD Abstract Objectives: Oncostatin M is a multifunctional cytokine belonging to the interleukin-6 family of cytokines. It has been implicated as an important modulator of lower airway remodeling in the setting of asthma. However, there have been few studies regarding a similar role for the upper airway epithelium in the setting of allergic rhinitis. This study was undertaken to investigate the expression of oncostatin M mRNA and protein in normal and allergic rhinitis nasal mucosa and to localize the expression of the oncostatin M protein in allergic rhinitis. Materials and Methods: Inferior turbinate mucosa samples from 20 patients with perennial allergic rhinitis and 20 matched normal control subjects were obtained. Oncostatin M mRNA was extracted from the inferior turbinate mucosae, then reverse transcriptase-polymerase chain reaction was performed and analyzed semiquantitatively. Differences in expression levels of oncostatin M protein between samples from allergic rhinitis patients and normal control subjects were analyzed through Western blot, and oncostatin M protein was localized immunohistochemically. Results: The expression levels of oncostatin M mRNA and protein were significantly upregulated in patients with allergic rhinitis mucosa. Oncostatin M protein was predominantly localized in the surface epithelium, infiltrating inflammatory cells, vascular endothelium, and submucosal glands and was more strongly expressed in the nasal mucosa of patients with allergic rhinitis than in normal control subjects. Conclusions: Oncostatin M is expressed in the human nasal mucosa and is upregulated in the setting of allergic nasal inflammation. These results suggest a possible contribution of oncostatin M in the remodeling of the nasal mucosa in allergic rhinitis. [source] Oncostatin M,induced CCL2 transcription in osteoblastic cells is mediated by multiple levels of STAT-1 and STAT-3 signaling: An implication for the pathogenesis of arthritisARTHRITIS & RHEUMATISM, Issue 5 2009Sang-Heng Kok Objective To examine the roles of STATs 1 and 3 in CCL2 production in human osteoblastic cells and their influences on arthritis development. Methods The expression of CCL2 in primary human osteoblasts and U2OS human osteoblastic cells was examined by Northern blotting and enzyme-linked immunosorbent assay. The roles of STAT-1/3 and c-Fos were assessed using short hairpin RNAs (shRNA) to silence their functions. Serine phosphorylation of STATs was assessed by Western blotting. Promoter activities of c-Fos and CCL2 were assessed by chloramphenicol acetyltransferase and luciferase assays, respectively. Interactions of STAT-1, STAT-3, and c-Fos with DNA were evaluated by electrophoretic mobility shift assay (EMSA) and immunoprecipitation. The effect of the JAK inhibitor AG-490 on collagen-induced arthritis (CIA) in rats was examined using immunohistochemistry. Results Oncostatin M (OSM) stimulated CCL2 expression in primary human osteoblasts and U2OS cells. In U2OS cells, STAT-1 and STAT-3 were involved in OSM-stimulated CCL2 expression, and both the phosphatidylinositol 3-kinase/Akt and MEK/ERK pathways were implicated in the activation of these STATs. STAT-1 and STAT-3 modulated the expression of c-Fos and directly transactivated the CCL2 promoter. Moreover, EMSA showed formation of a DNA,protein complex containing STAT-1, STAT-3, and interestingly, c-Fos. Immunoprecipitation confirmed the binding between c-Fos and STAT-1/3. Reporter assay revealed synergistic attenuation of CCL2 promoter activity by shRNA targeting of STAT-1, STAT-3, and c-Fos. AG-490 suppressed OSM-stimulated activation of STAT-1/3 and synthesis of CCL2 in vitro and diminished the severity of CIA and the number of CCL2-synthesizing osteoblasts in vivo. Conclusion These findings show that multiple levels of STAT-1/3 signaling modulate OSM-stimulated CCL2 expression in human osteoblastic cells. Clinically, this pathway may be related to the pathogenesis of arthritis. [source] Interleukin-6 cytokine family member oncostatin M is a hair-follicle-expressed factor with hair growth inhibitory propertiesEXPERIMENTAL DERMATOLOGY, Issue 1 2008Mei Yu Abstract:, The activation of receptor complexes containing glycoprotein 130 (gp130) identifies the interleukin (IL)-6 cytokine family. We examined members of this family for their expression and activity in hair follicles. Quantitative polymerase chain reaction using mRNA derived from microdissected, anagen-stage human hair follicles and comparison to non-follicular skin epithelium revealed higher levels of IL-6 (15.5-fold) and oncostatin M (OSM, 3.4-fold) in hair follicles. In contrast, expression of all mRNAs coding for IL-6 cytokine family receptors was reduced. Immunohistology suggested expression of OSM, gp130, leukaemia inhibitory factor receptor (LIFr) and IL-11r in the hair follicle root sheaths and dermal papilla, while IL-11, IL-6r and OSMr were expressed in root sheaths alone. IL-6 was expressed in the dermal papilla while cardiotrophin-1 (CT-1) and LIF were not observed. OSM and to a lesser extent CT-1 exhibited a dose-dependent growth inhibition capacity on human hair follicles in vitro. OSM and CT-1 incubated with agarose beads and injected subcutaneously at 1 ,g per mouse into telogen skin of 65-day-old mice revealed no capacity to induce anagen hair growth. In contrast, injection of 65-day-old mice in which anagen had been induced by hair plucking revealed a moderate hair growth inhibitory capacity for OSM, but no significant effect for CT-1. The data identify OSM as a modulator of hair follicle growth and suggest other family members may also have some degree of hair growth inhibitory effect. In principle, increased expression of some IL-6 cytokine family members in cutaneous inflammation might contribute to the promotion of hair loss. [source] Hypoxia-inducible factor 1, is up-regulated by oncostatin M and participates in oncostatin M signaling,HEPATOLOGY, Issue 1 2009Stefan Vollmer The interleukin-6,type cytokine oncostatin M (OSM) acts via the Janus kinase/signal transducer and activator of transcription pathway as well as via activation of mitogen-activated protein kinases and is known to critically regulate processes such as liver development and regeneration, hematopoiesis, and angiogenesis, which are also determined by hypoxia with the hypoxia-inducible factor 1, (HIF1,) as a key component. Here we show that treatment of hepatocytes and hepatoma cells with OSM leads to an increased protein level of HIF1, under normoxic and hypoxic conditions. Furthermore, the OSM-dependent HIF1, increase is mediated via Janus kinase/signal transducer and activator of transcription 3 and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 pathways. OSM-mediated HIF1, up-regulation did not result from an increase in HIF1, protein stability but from increased transcription from the HIF1, gene. In addition, we show that the OSM-induced HIF1, gene transcription and the resulting enhanced HIF1, protein levels are important for the OSM-dependent vascular endothelial growth factor and plasminogen activator inhibitor 1 gene induction associated with several diseases. Conclusion: HIF1, levels increase significantly after treatment of hepatocytes and hepatoma cells with OSM, and HIF1, contributes to OSM downstream signaling events, pointing to a cross-talk between cytokine and hypoxia signaling in processes such as liver development and regeneration. (HEPATOLOGY 2009.) [source] Interleukin-4 antagonizes oncostatin M and transforming growth factor beta-induced responses in articular chondrocytesJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2008Mohammed El Mabrouk Abstract Oncostatin M (OSM) stimulates cartilage degradation in rheumatoid arthritis (RA) by inducing matrix metalloproteinases (MMPs) and aggrecanases (ADAMTS; a disintegrin and metalloproteinase with thrombospondin motif). Transforming growth factor beta (TGF-,1) induces cartilage repair in joints but in excessive amounts, promotes inflammation. OSM and TGF-,1 also induce tissue inhibitor of metalloproteinase-3 (TIMP-3), an important natural inhibitor of MMPs, aggrecanases, and tumor necrosis factor alpha converting enzyme (TACE), the principal proteases involved in arthritic inflammation and cartilage degradation. We studied cartilage protective mechanisms of the antiinflammatory cytokine, interleukin-4 (IL-4). IL-4 strongly (MMP-13 and TIMP-3) or minimally (ADAMTS-4) suppressed OSM-induced gene expression in chondrocytes. IL-4 did not affect OSM-stimulated phosphorylation of extracellular signal-regulated kinases (ERKs), protein 38 (p38), c-Jun N-terminal kinase (JNK) and Stat1. Lack of additional suppression with their inhibitors suggested that MMP-13, ADAMTS-4, and TIMP-3 inhibition was independent of these mediators. IL-4 also downregulated TGF-,1-induced TIMP-3 gene expression, Smad2, and JNK phosphorylation. Additional suppression of TIMP-3 RNA by JNK inhibitor suggests JNK implication. The cartilage protective effects of IL-4 in animal models of arthritis may be due to its inhibition of MMPs and ADAMTS-4 expression. However, suppression of TIMP-3 suggests caution for using IL-4 as a cartilage protective therapy. J. Cell. Biochem. 103: 588,597, 2008. © 2007 Wiley-Liss, Inc. [source] Gingival fibroblasts grown from cyclosporin-treated patients show a reduced production of matrix metalloproteinase-1 (MMP-1) compared with normal gingival fibroblasts, and cyclosporin down-regulates the production of MMP-1 stimulated by pro-inflammatory cytokinesJOURNAL OF PERIODONTAL RESEARCH, Issue 6 2007T. Z. Sukkar Background and Objective:, Cyclosporin-induced gingival overgrowth arises from an alteration in collagen homeostasis and is enhanced by inflammatory changes in the gingival tissues. The aim of this study was to investigate the interaction among interleukin-1, oncostatin M, cyclosporin and nifedipine in promoting the up-regulation of matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase by gingival fibroblasts. Material and Methods:, Fibroblast cultures (n = 5) were obtained from healthy controls and from patients with cyclosporin-induced gingival overgrowth, and cells were harvested between the fourth and ninth passages. Cells were stimulated with interleukin-1 and oncostatin M, alone or in combination, and with different concentrations of cyclosporin (0,2000 ng/mL) and nifedipine (0,200 ng/mL). MMP-1 and tissue inhibitor of metalloproteinase-1 production was determined using an enzyme-linked immunosorbent assay technique. A CyQuant cell proliferation assay was used to determine the DNA concentration in the sample. Results:, Fibroblasts obtained from patients with cyclosporin-induced gingival overgrowth produced significantly lower levels of MMP-1 than control fibroblasts (p < 0.001); tissue inhibitor of metalloproteinase-1 levels were significantly lower (p < 0.05), and the ratio of MMP-1 to tissue inhibitor of metalloproteinase-1 was reduced, in the conditioned medium of patients with cyclosporin-induced gingival overgrowth compared with controls. Interleukin-1 and oncostatin M produced a significant increase in the up-regulation of MMP-1, which was reversed when cyclosporin and nifedipine were added to the cell cultures (p < 0.05). Conclusion:, Pro-inflammatory cytokines significantly up-regulate MMP-1 in cultured gingival fibroblasts. Up-regulation is attenuated by both cyclosporin and nifedipine. The interaction may account for the synergism between inflammation and cyclosporin-induced gingival overgrowth. [source] Procysteine Stimulates Expression of Key Anabolic Factors and Reduces Plantaris Atrophy in Alcohol-Fed RatsALCOHOLISM, Issue 8 2009Jeffrey S. Otis Background:, Long-term alcohol ingestion may produce severe oxidant stress and lead to skeletal muscle dysfunction. Emerging evidence has suggested that members of the interleukin-6 (IL-6) family of cytokines play diverse roles in the regulation of skeletal muscle mass. Thus, our goals were (i) to minimize the degree of oxidant stress and attenuate atrophy by supplementing the diets of alcohol-fed rats with the glutathione precursor, procysteine, and (ii) to identify the roles of IL-6 family members in alcoholic myopathy. Methods:, Age- and gender-matched Sprague-Dawley rats were fed the Lieber-DeCarli liquid diet containing either alcohol or an isocaloric substitution (control diet) for 35 weeks. Subgroups of alcohol-fed rats received procysteine (0.35%, w/v) for the final 12 weeks. Plantaris morphology was assessed by hematoxylin and eosin staining. Major components of glutathione metabolism were determined using assay kits. Real-time PCR was used to determine expression levels of several genes. Results:, Plantaris muscles from alcohol-fed rats displayed extensive atrophy, as well as decreased glutathione levels, decreased activities of glutathione reductase and glutathione peroxidase, decreased superoxide dismutase (SOD)-2 (Mn-SOD2), and increased NADPH oxidase-1 gene expression,each indicative of significant oxidant stress. Alcohol also induced gene expression of catabolic factors including IL-6, oncostatin M, atrogin-1, muscle ring finger protein-1, and IGFBP-1. Procysteine treatment attenuated plantaris atrophy, restored glutathione levels, and increased catalase, Cu/Zn-SOD1, and Mn-SOD2 mRNA expression, but did not reduce other markers of oxidant stress or levels of these catabolic factors. Instead, procysteine stimulated gene expression of anabolic factors such as insulin-like growth factor-1, ciliary neurotrophic factor, and cardiotrophin-1. Conclusions:, Procysteine significantly attenuated, but did not completely abrogate, alcohol-induced oxidant stress or catabolic factors. Rather, procysteine minimized the extent of plantaris atrophy by inducing components of several anabolic pathways. Therefore, anti-oxidant treatments such as procysteine supplementation may benefit individuals with alcoholic myopathy. [source] Upregulation of Oncostatin M in Allergic RhinitisTHE LARYNGOSCOPE, Issue 12 2005Hee Joon Kang MD Abstract Objectives: Oncostatin M is a multifunctional cytokine belonging to the interleukin-6 family of cytokines. It has been implicated as an important modulator of lower airway remodeling in the setting of asthma. However, there have been few studies regarding a similar role for the upper airway epithelium in the setting of allergic rhinitis. This study was undertaken to investigate the expression of oncostatin M mRNA and protein in normal and allergic rhinitis nasal mucosa and to localize the expression of the oncostatin M protein in allergic rhinitis. Materials and Methods: Inferior turbinate mucosa samples from 20 patients with perennial allergic rhinitis and 20 matched normal control subjects were obtained. Oncostatin M mRNA was extracted from the inferior turbinate mucosae, then reverse transcriptase-polymerase chain reaction was performed and analyzed semiquantitatively. Differences in expression levels of oncostatin M protein between samples from allergic rhinitis patients and normal control subjects were analyzed through Western blot, and oncostatin M protein was localized immunohistochemically. Results: The expression levels of oncostatin M mRNA and protein were significantly upregulated in patients with allergic rhinitis mucosa. Oncostatin M protein was predominantly localized in the surface epithelium, infiltrating inflammatory cells, vascular endothelium, and submucosal glands and was more strongly expressed in the nasal mucosa of patients with allergic rhinitis than in normal control subjects. Conclusions: Oncostatin M is expressed in the human nasal mucosa and is upregulated in the setting of allergic nasal inflammation. These results suggest a possible contribution of oncostatin M in the remodeling of the nasal mucosa in allergic rhinitis. [source] DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytesARTHRITIS & RHEUMATISM, Issue 11 2009Ko Hashimoto Objective To determine whether changes in the DNA methylation status in the promoter region of the gene encoding interleukin-1, (IL-1,) account for expression of IL1B messenger RNA (mRNA) after long-term treatment of human articular chondrocytes with inflammatory cytokines. Methods IL-1,, tumor necrosis factor , (TNF,) plus oncostatin M (OSM), or 5-azadeoxycytidine (5-aza-dC) was added twice weekly for 4,5 weeks to primary cultures of normal human articular chondrocytes derived from the femoral head cartilage of patients with a fracture of the femoral neck. Expression of MMP13, IL1B, TNFA, and DNMT1 was determined by SYBR Green,based quantitative reverse transcription,polymerase chain reaction (RT-PCR) analysis of genomic DNA and total RNA extracted from the same sample before and after culture. Bisulfite modification was used to identify which CpG sites in the IL1B promoter showed differential methylation between IL1B -expressing and IL1B -nonexpressing cells. The percentages of cells that were methylated at that critical CpG site (,299 bp) were quantified by a method that depended on methylation-sensitive restriction enzymes and real-time RT-PCR. Secretion of IL-1, into the culture media was assessed by enzyme-linked immunosorbent assay. Results Healthy chondrocytes did not express IL1B mRNA, but the levels were increased 5-fold by treatment with 5-aza-dC and were increased 100,1,000-fold by treatment with TNF,/OSM. The percentage CpG methylation was decreased by 5-aza-dC treatment but was reduced considerably more by IL-1, and was almost abolished by TNF,/OSM. The mRNA was translated into protein in cytokine-treated chondrocytes. Conclusion These novel findings indicate that inflammatory cytokines can change the DNA methylation status at key CpG sites, resulting in long-term induction of IL1B in human articular chondrocytes. [source] Induction of CCL13 expression in synovial fibroblasts highlights a significant role of oncostatin M in rheumatoid arthritisARTHRITIS & RHEUMATISM, Issue 7 2009Christoph Hintzen Objective To investigate the molecular mechanisms of CCL13/monocyte chemoattractant protein 4 (MCP-4) chemokine expression through proinflammatory cytokines in different primary human fibroblasts and the contribution of CCL13 to monocyte migration. Methods Using RNase protection assays and enzyme-linked immunosorbent assays, we quantified the expression of CCL13 compared with that of CCL2/MCP-1 in primary human fibroblasts. Boyden chamber assays were performed to determine the importance of CCL13 for migration of primary monocytes. Pharmacologic inhibitors as well as small interfering RNA knockdown approaches were used to investigate the signaling pathways regulating CCL13 expression. Results The interleukin-6 (IL-6),type cytokine oncostatin M (OSM) was a powerful inducer of CCL13 expression in primary synovial fibroblasts from patients with rheumatoid arthritis (RA) as well as those from healthy control subjects but not in other types of fibroblasts. Neither IL-6 nor tumor necrosis factor , could stimulate the expression of CCL13 in synovial fibroblasts; IL-1, was a very weak inducer. Synovial fibroblasts from patients with RA constitutively produced low amounts of CCL13, which was partially dependent on constitutive production of OSM. By investigating the underlying molecular mechanism, we identified STAT-5, ERK-1/2, and p38 as critical factors involved in OSM-dependent transcription and messenger RNA stabilization of CCL13. Conclusion In contrast to other prominent cytokines involved in the pathogenesis of RA, OSM can strongly up-regulate the expression of CCL13, a chemokine recently identified in the synovial fluid of patients with RA. Despite potent OSM-induced signal transduction in all types of fibroblasts analyzed, only synovial fibroblasts secreted CCL13, which might be indicative of tissue-specific imprinting of different fibroblasts during development. [source] A new class of potent matrix metalloproteinase 13 inhibitors for potential treatment of osteoarthritis: Evidence of histologic and clinical efficacy without musculoskeletal toxicity in rat modelsARTHRITIS & RHEUMATISM, Issue 7 2009Vijaykumar M. Baragi Objective Matrix metalloproteinases (MMPs) have long been considered excellent targets for osteoarthritis (OA) treatment. However, clinical utility of broad-spectrum MMP inhibitors developed for this purpose has been restricted by dose-limiting musculoskeletal side effects observed in humans. This study was undertaken to identify a new class of potent and selective MMP-13 inhibitors that would provide histologic and clinical efficacy without musculoskeletal toxicity. Methods Selectivity assays were developed using catalytic domains of human MMPs. Freshly isolated bovine articular cartilage or human OA cartilage was used in in vitro cartilage degradation assays. The rat model of monoiodoacetate (MIA),induced OA was implemented for assessing the effects of MMP-13 inhibitors on cartilage degradation and joint pain. The surgical medial meniscus tear model in rats was used to evaluate the chondroprotective ability of MMP-13 inhibitors in a chronic disease model of OA. The rat model of musculoskeletal side effects (MSS) was used to assess whether selective MMP-13 inhibitors have the joint toxicity associated with broad-spectrum MMP inhibitors. Results A number of non,hydroxamic acid,containing compounds that showed a high degree of potency for MMP-13 and selectivity against other MMPs were designed and synthesized. Steady-state kinetics experiments and Lineweaver-Burk plot analysis of rate versus substrate concentration with one such compound, ALS 1-0635, indicated linear, noncompetitive inhibition, and Dixon plot analysis from competition studies with a zinc chelator (acetoxyhydroxamic acid) and ALS 1-0635 demonstrated nonexclusive binding. ALS 1-0635 inhibited bovine articular cartilage degradation in a dose-dependent manner (48.7% and 87.1% at 500 nM and 5,000 nM, respectively) and was effective in inhibiting interleukin-1,, and oncostatin M,induced C1,C2 release in human OA cartilage cultures. ALS 1-0635 modulated cartilage damage in the rat MIA model (mean ± SEM damage score 1.3 ± 0.3, versus 2.2 ± 0.4 in vehicle-treated animals). Most significantly, when treated twice daily with oral ALS 1-0635, rats with surgically induced medial meniscus tear exhibited histologic evidence of chondroprotection and reduced cartilage degeneration, without observable musculoskeletal toxicity. Conclusion The compounds investigated in this study represent a novel class of MMP-13 inhibitors. They are mechanistically distinct from previously reported broad-spectrum MMP inhibitors and do not exhibit the problems previously associated with these inhibitors, including selectivity, poor pharmacokinetics, and MSS liability. MMP-13 inhibitors exert chondroprotective effects and can potentially modulate joint pain, and are, therefore, uniquely suited as potential disease-modifying osteoarthritis drugs. [source] Alteration of articular cartilage frictional properties by transforming growth factor ,, interleukin-1,, and oncostatin MARTHRITIS & RHEUMATISM, Issue 2 2009Jason P. Gleghorn Objective To evaluate the functional effects of transforming growth factor ,1 (TGF,1), interleukin-1, (IL-1,), and oncostatin M (OSM) on the frictional properties of articular cartilage and to determine the role of cytokine-mediated changes in cartilage frictional properties by extracting and redepositing lubricin on the surface of cartilage explants. Methods Neonatal bovine cartilage explants were cultured in the presence or absence of 10 ng/ml of TGF,1, IL-1,, or OSM over 48 hours. Boundary lubrication tests were conducted to determine the effects of endogenously produced surface localized lubricin and of exogenous lubricin at the tissue surface and in the lubricant solution. The initial friction coefficient (,0), equilibrium friction coefficient (,eq), and Young's modulus (EY) were determined from the temporal load data. Results IL-1, and OSM decreased tissue glycosaminoglycan (GAG) content by ,20% over 48 hours and decreased EY to a similar extent (11,17%), but TGF, did not alter GAG content or EY. Alterations in proteoglycan content corresponded to changes in ,0, but endogenous lubricin decreased boundary mode ,eq. The addition of exogenous lubricin, either localized at the tissue surface or in the lubricating solution, did not modulate ,0, but it did lower ,eq in cytokine-treated cartilage. Conclusion This study provides new insight into the functional consequences of cytokine-mediated changes in friction coefficient. In combination with established pathways of cytokine-mediated lubricin metabolism, these data provide evidence of distinct biochemical origins of boundary and biphasic pressure-mediated lubrication mechanisms in cartilage, with boundary lubrication regulated by surface accumulation of lubricants and biphasic lubrication controlled by factors such as GAG content that affect water movement through the tissue. [source] Epigallocatechin-3-gallate diminishes CCL2 expression in human osteoblastic cells via up-regulation of phosphatidylinositol 3-Kinase/Akt/Raf-1 interaction: A potential therapeutic benefit for arthritisARTHRITIS & RHEUMATISM, Issue 10 2008Sze-Kwan Lin Objective To assess the effects of epigallocatechin-3-gallate (EGCG) on oncostatin M (OSM),induced CCL2 synthesis and the associated signaling pathways in human osteoblastic cells. The therapeutic effect of EGCG on collagen-induced arthritis (CIA) in rats was also studied. Methods CCL2 and c-Fos messenger RNA expression was analyzed by Northern blotting. The modulating effects of EGCG on the activation of Raf-1, Akt, and phosphatidylinositol 3-kinase (PI 3-kinase) were examined by coimmunoprecipitation, Western blotting, and PI 3-kinase activity assay. Interactions between c-Fos and CCL2 promoter were evaluated by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay. The effect of EGCG on CIA in rats was examined clinically and immunohistochemically. Results EGCG inhibited OSM-stimulated CCL2 expression in primary human osteoblasts and MG-63 cells. In MG-63 cells, EGCG alleviated the OSM-induced phosphorylation of Raf-1 at Ser338 but restored the dephosphorylation of Raf-1 at Ser259. EGCG increased the activity of PI 3-kinase, the level of phosphorylated Akt (Ser473), and binding between Raf-1 and active Akt. EMSA and ChIP assay revealed that EGCG attenuated activator protein 1 (AP-1),CCL2 promoter interaction, possibly by reducing c-Fos synthesis. Codistribution of CD68+ macrophages and CCL2+ osteoblasts in osteolytic areas was obvious in the CIA model. Administration of EGCG markedly diminished the severity of CIA, macrophage infiltration, and the amount of CCL2-synthesizing osteoblasts. Conclusion By stimulating PI 3-kinase activity, EGCG promoted Akt/Raf-1 crosstalk, resulting in decreased AP-1 binding to CCL2 promoter, and finally reduced CCL2 production in osteoblasts. EGCG alleviated the severity of CIA, probably by suppressing CCL2 synthesis in osteoblasts to diminish macrophage infiltration. Our data support the therapeutic potential of EGCG on arthritis. [source] E-cadherin synergistically induces hepatospecific phenotype and maturation of embryonic stem cells in conjunction with hepatotrophic factorsBIOTECHNOLOGY & BIOENGINEERING, Issue 3 2005Anouska Dasgupta Abstract Since effective cell sourcing is a major challenge for the therapeutic management of liver disease and liver failure, embryonic stem (ES) cells are being widely investigated as a promising source of hepatic-like cells with their proliferative and pluripotent capacities. Cell,cell interactions are crucial in embryonic development modulating adhesive and signaling functions; specifically, the cell,cell adhesion ligand, cadherin is instrumental in gastrulation and hepatic morphogenesis. Inspired by the role of cadherins in development, we investigated the role of expression of E-cadherin in cultured murine ES cells on the induction of hepatospecific phenotype and maturation. The cadherin-expressing embryonic stem (CE-ES) cells intrinsically formed pronounced cell aggregates and cuboidal morphology whereas cadherin-deficient cadherin-expressing embryonic stem (CD-ES) cells remained more spread out and corded in morphology. Through controlled stimulation with single or combined forms of hepatotrophic growth factors; hepatocyte growth factor (HGF), dexamethasone (DEX) and oncostatin M (OSM), we investigated the progressive maturation of CE-ES cells, in relation to the control, CD-ES cells. Upon growth factor treatment, the CE-ES cells adopted a more compacted morphology, which exhibited a significant hepatocyte-like cuboidal appearance in the presence of DEX-OSM-HGF. In contrast, the CD-ES cells exhibited a mixed morphology and appeared to be more elongated in the presence of DEX-OSM-HGF. Reverse-transcriptase polymerase chain reaction was used to delineate the most differentiating condition in terms of early (alpha-fetoprotein (AFP)), mid (albumin), and late-hepatic (glucose-6-phosphatase) markers in relation to growth factor presentation for both CE-ES and CD-ES cells. We report that following the most differentiating condition of DEX-OSM-HGF stimulation, CE-ES cells expressed increased levels of albumin and glucose-6-phosphatase, whereas the CD-ES cells showed low levels of AFP and marginal levels of albumin and glucose-6-phosphatase. These trends suggest that the membrane expression of E-cadherin in ES cells can elicit a marked response to growth factor stimulation and lead to the induction of later stages of hepatocytic maturation. Thus, cadherin-engineered ES cells could be used to harness the cross-talk between the hepatotrophic and cadherin-based signaling pathways for controlled acceleration of ES hepatodifferentiation. © 2005 Wiley Periodicals, Inc. [source] |