Home About us Contact | |||
Offspring Size (offspring + size)
Selected AbstractsCROSS-GENERATIONAL ENVIRONMENTAL EFFECTS AND THE EVOLUTION OF OFFSPRING SIZE IN THE TRINIDADIAN GUPPY POECILIA RETICULATAEVOLUTION, Issue 2 2006Farrah Bashey Abstract The existence of adaptive phenotypic plasticity demands that we study the evolution of reaction norms, rather than just the evolution of fixed traits. This approach requires the examination of functional relationships among traits not only in a single environment but across environments and between traits and plasticity itself. In this study, I examined the interplay of plasticity and local adaptation of offspring size in the Trinidadian guppy, Poecilia reticulata. Guppies respond to food restriction by growing and reproducing less but also by producing larger offspring. This plastic difference in offspring size is of the same order of magnitude as evolved genetic differences among populations. Larger offspring sizes are thought to have evolved as an adaptation to the competitive environment faced by newborn guppies in some environments. If plastic responses to maternal food limitation can achieve the same fitness benefit, then why has guppy offspring size evolved at all? To explore this question, I examined the plastic response to food level of females from two natural populations that experience different selective environments. My goals were to examine whether the plastic responses to food level varied between populations, test the consequences of maternal manipulation of offspring size for offspring fitness, and assess whether costs of plasticity exist that could account for the evolution of mean offspring size across populations. In each population, full-sib sisters were exposed to either a low- or high-food treatment. Females from both populations produced larger, leaner offspring in response to food limitation. However, the population that was thought to have a history of selection for larger offspring was less plastic in its investment per offspring in response to maternal mass, maternal food level, and fecundity than the population under selection for small offspring size. To test the consequences of maternal manipulation of offspring size for offspring fitness, I raised the offspring of low- and high-food mothers in either low- or high-food environments. No maternal effects were detected at high food levels, supporting the prediction that mothers should increase fecundity rather than offspring size in noncompetitive environments. For offspring raised under low food levels, maternal effects on juvenile size and male size at maturity varied significantly between populations, reflecting their initial differences in maternal manipulation of offspring size; nevertheless, in both populations, increased investment per offspring increased offspring fitness. Several correlates of plasticity in investment per offspring that could affect the evolution of offspring size in guppies were identified. Under low-food conditions, mothers from more plastic families invested more in future reproduction and less in their own soma. Similarly, offspring from more plastic families were smaller as juveniles and female offspring reproduced earlier. These correlations suggest that a fixed, high level of investment per offspring might be favored over a plastic response in a chronically low-resource environment or in an environment that selects for lower reproductive effort [source] DO FEMALE SPIDERS SELECT HEAVIER MALES FOR THE GENES FOR BEHAVIORAL AGGRESSIVENESS THEY OFFER THEIR OFFSPRING?EVOLUTION, Issue 6 2003S. E. RIECHERT Abstract., We explore the hypothesis that females choose to mate with heavier males for the genes for behavioral aggressiveness they offer their offspring in the desert spider, Agelenopsis aperta. Behavioral aggressiveness is important to competition for limited resources in the field and is thus correlated with the mass spiders achieve. We established four crosses based on the body mass relationships of parents subjected to selection in their natural environment (female mass/male mass: HI/HI, HI/LO, LO/HI, and LO/LO) and reared the F1 offspring in a noncompetitive laboratory environment. Offspring size and mass at maturity were measured, life history parameters recorded, and behavioral aggressiveness scored in a series of tests. Significant familial effects were detected in all of these measures, but pertinent cross effects were observed only in the assays measuring behavioral aggressiveness. The results were summarized in terms of the fitness costs to HI females of mating with LO males (fewer female offspring of the more aggressive phenotypes) and the benefits to LO females of mating with HI males (fewer fearful offspring of both sexes). [source] Temperature-mediated plasticity and genetic differentiation in egg size and hatching size among populations of Crepidula (Gastropoda: Calyptraeidae)BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2010RACHEL COLLIN Offspring size is a key characteristic in life histories, reflecting maternal investment per offspring and, in marine invertebrates, being linked to mode of development. Few studies have focused explicitly on intraspecific variation and plasticity in developmental characteristics such as egg size and hatching size in marine invertebrates. We measured over 1000 eggs and hatchlings of the marine gastropods Crepidula atrasolea and Crepidula ustulatulina from two sites in Florida. A common-garden experiment showed that egg size and hatching size were larger at 23 °C than at 28 °C in both species. In C. ustulatulina, the species with significant genetic population structure in cytochrome oxidase I (COI), there was a significant effect of population: Eggs and hatchlings from the Atlantic population were smaller than those from the Gulf. The two populations also differed significantly in hatchling shape. Population effects were not significant in C. atrasolea, the species with little genetic population structure in COI, and were apparent through their marginal interaction with temperature. In both species, 60,65% of the variation in egg size and hatching size was a result of variation among females and, in both species, the population from the Atlantic coast showed greater temperature-mediated plasticity than the population from the Gulf. These results demonstrate that genetic differentiation among populations, plastic responses to variation in environmental temperature, and differences between females all contribute significantly to intraspecific variation in egg size and hatching size. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 489,499. [source] Offspring size and survival in the frog Rana latastei: from among-population to within-clutch variationBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2009GENTILE FRANCESCO FICETOLA Egg size is considered to be a major maternal effect for offspring in oviparous organisms. It has profound consequences on fitness, and differences in egg size are viewed as plastic responses to environmental variability. However, it is difficult to identify the effect of egg size per se because egg size can covary with genetic features of the mother and with other nongenetic factors. We analysed the relationship between offspring starting size (i.e. a proxy of egg size) and larval survival in the frog Rana latastei. We analysed this relationship: (1) among five populations at different altitudes; (2) among clutches laid from different females; and (3) among siblings within clutches, to evaluate the effect of starting size. We observed differences among populations for offspring size, but starting size was not related to altitude or genetic diversity. Mortality was higher in populations and families with small average starting size; however, among siblings, the relationship between starting size and mortality was not verified. The relationship observed among clutches may therefore be caused by covariation between egg size and other effects. This suggests that the covariation between egg size and other effects can result in apparent relationships between egg size and fitness-related traits. Proximate and ultimate factors can cause the phenotypic variation of hatchlings in the wild, and key traits can be related to this variation, but the underlying causes require further investigation. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 845,853. [source] Smaller amphipod mothers show stronger trade-offs between offspring size and numberECOLOGY LETTERS, Issue 2 2000Douglas S. Glazier Trade-offs between embryo mass and number were studied in 10 populations of the freshwater amphipod Gammarus minus. Trade-offs were stronger in populations with small brooding females than in those with larger brooding females. Relationships between embryo mass and maternal body mass were also stronger in populations dominated by small versus large brooding females. These patterns are likely the result of morphological constraints, at least in part. Embryo size is more affected by brood size and maternal size in small mothers, probably because of offspring-packaging constraints associated with small brood pouches. Energy constraints appear to be less important. These results suggest that body size may not only affect the magnitude of individual life-history traits, as is well known, but also the covariance between traits. [source] CROSS-GENERATIONAL ENVIRONMENTAL EFFECTS AND THE EVOLUTION OF OFFSPRING SIZE IN THE TRINIDADIAN GUPPY POECILIA RETICULATAEVOLUTION, Issue 2 2006Farrah Bashey Abstract The existence of adaptive phenotypic plasticity demands that we study the evolution of reaction norms, rather than just the evolution of fixed traits. This approach requires the examination of functional relationships among traits not only in a single environment but across environments and between traits and plasticity itself. In this study, I examined the interplay of plasticity and local adaptation of offspring size in the Trinidadian guppy, Poecilia reticulata. Guppies respond to food restriction by growing and reproducing less but also by producing larger offspring. This plastic difference in offspring size is of the same order of magnitude as evolved genetic differences among populations. Larger offspring sizes are thought to have evolved as an adaptation to the competitive environment faced by newborn guppies in some environments. If plastic responses to maternal food limitation can achieve the same fitness benefit, then why has guppy offspring size evolved at all? To explore this question, I examined the plastic response to food level of females from two natural populations that experience different selective environments. My goals were to examine whether the plastic responses to food level varied between populations, test the consequences of maternal manipulation of offspring size for offspring fitness, and assess whether costs of plasticity exist that could account for the evolution of mean offspring size across populations. In each population, full-sib sisters were exposed to either a low- or high-food treatment. Females from both populations produced larger, leaner offspring in response to food limitation. However, the population that was thought to have a history of selection for larger offspring was less plastic in its investment per offspring in response to maternal mass, maternal food level, and fecundity than the population under selection for small offspring size. To test the consequences of maternal manipulation of offspring size for offspring fitness, I raised the offspring of low- and high-food mothers in either low- or high-food environments. No maternal effects were detected at high food levels, supporting the prediction that mothers should increase fecundity rather than offspring size in noncompetitive environments. For offspring raised under low food levels, maternal effects on juvenile size and male size at maturity varied significantly between populations, reflecting their initial differences in maternal manipulation of offspring size; nevertheless, in both populations, increased investment per offspring increased offspring fitness. Several correlates of plasticity in investment per offspring that could affect the evolution of offspring size in guppies were identified. Under low-food conditions, mothers from more plastic families invested more in future reproduction and less in their own soma. Similarly, offspring from more plastic families were smaller as juveniles and female offspring reproduced earlier. These correlations suggest that a fixed, high level of investment per offspring might be favored over a plastic response in a chronically low-resource environment or in an environment that selects for lower reproductive effort [source] EVOLUTION OF MOUTHBROODING AND LIFE-HISTORY CORRELATES IN THE FIGHTING FISH GENUS BETTAEVOLUTION, Issue 4 2004Lukas Rüber Abstract The origin of and evolutionary transitions among the extraordinary diverse forms of parental care in teleost fish remain largely unknown. The "safe harbor" hypothesis predicts that the evolution from a "guarding" to a "brooding" form of care in teleost fish is associated with shifts in reproductive and life-history features such as reduced fecundity, and increased egg volume with higher parental investment. Robust phylogenetic hypotheses may help to identify evolutionary changes in key traits associated with differences in the form of parental care. Here, we used reconstruction of ancestral character states to study the evolution of the two forms of parental care, bubble nesting and mouthbrooding in the fighting fish genus Betta. We also applied a comparative analysis using the phylogenetic generalized least-squares method to test the "safe harbor" hypothesis by evaluating differences between the two forms of parental care in standard length, life-history traits, and three habitat variables. Evolutionary hypotheses were derived from the first molecular phylogeny (nuclear and mitochondrial DNA sequence data; 4448 bp) of this speciose group. Ancestral character state reconstructions of the evolution of the form of parental care in the genus Betta, using the methods of unweighted parsimony and maximum likelihood, are uncertain and further indicate a high rate of evolutionary transitions. Applying different weights for the suspected directionality of changes, based on the consistent phenotypic and behavioral differences found between bubble nesters and mouthbrooders, recurrent origin of mouthbrooding in the genus Betta is favored using parsimony. Our comparative analyses further demonstrate that bubble nesters and mouthbrooders do not have a consistent set of life-history correlates. The form of parental care in Betta is correlated only with offspring size, with mouthbrooders having significantly bigger offspring than bubble nesters, but is not correlated with egg volume, clutch size, and broodcare duration, nor with any of the three habitat variables tested. Our results thus challenge the general predictions of the "safe harbor" hypothesis for the evolution of alternative brood care forms in the fighting fish genus Betta. [source] SELECTION AGAINST LATE EMERGENCE AND SMALL OFFSPRING IN ATLANTIC SALMON (SALMO SALAR)EVOLUTION, Issue 2 2000Sigurd Einum Abstract., Timing of breeding and offspring size are maternal traits that may influence offspring competitive ability, dispersal, foraging, and vulnerability to predation and climatic conditions. To quantify the extent to which these maternal traits may ultimately affect an organism's fitness, we undertook laboratory and field experiments with Atlantic salmon (Salmo salar). To control for confounding effects caused by correlated traits, manipulations of the timing of fertilization combined with intraclutch comparisons were used. In the wild, a total of 1462 juveniles were marked at emergence from gravel nests. Recapture rates suggest that up to 83.5% mortality occurred during the first four months after emergence from the gravel nests, with the majority (67.5%) occurring during the initial period ending 17 days after median emergence. Moreover, the mortality was selective during this initial period, resulting in a significant phenotypic shift toward an earlier date of and an increased length at emergence. However, no significant selection differentials were detected thereafter, indicating that the critical episode of selection had occurred at emergence. Furthermore, standardized selection gradients indicated that selection was more intense on date of than on body size at emergence. Timing of emergence had additional consequences in terms of juvenile body size. Late-emerging juveniles were smaller than early-emerging ones at subsequent samplings, both in the wild and in parallel experiments conducted in seminatural stream channels, and this may affect success at subsequent size-selective episodes, such as winter mortality and reproduction. Finally, our findings also suggest that egg size had fitness consequences independent of the effects of emergence time that directly affected body size at emergence and, in turn, survival and size at later life stages. The causality of the maternal effects observed in the present study supports the hypothesis that selection on juvenile traits may play an important role in the evolution of maternal traits in natural populations. [source] Parent age differentially influences offspring size over the course of development in Laysan albatrossJOURNAL OF ZOOLOGY, Issue 1 2008D. C. Dearborn Abstract Offspring growth and survival are predicted to be higher for older parents, due to a variety of mechanisms, such as increased breeding experience or greater investment favored by low residual reproductive value. Yet the extent to which parent age affects offspring viability is likely to vary between different aspects of growth and survival, perhaps being most pronounced at the most stressful stages of reproduction. We studied the link between parent age and nestling growth and survival in the Laysan albatross, a long-lived seabird with a mean first breeding age of 8 years. Offspring of older parents were more likely to survive to fledging. Among those that did fledge, nestlings of older parents grew more rapidly. However, parent age did not influence the eventual asymptotic size that nestlings reached before fledging: fast-growing nestlings of older parents reached 90% of asymptotic size roughly 1 week sooner, but slow-growing nestlings of younger parents eventually caught up in size before fledging. Older parents bred c. 2 days earlier than younger parents, but hatch date did not explain observed variation in offspring success. The extent to which parent age accounted for variation in size of individual nestlings was not constant but peaked near the midpoint of development. This could reflect a time period when demands on parents reveal age-based differences in parental quality. Overall, growth and survival of offspring increased with parent age in this species, even though the late age of first breeding potentially provides a 7-year period for birds to hone their foraging skills or for selection to eliminate low-quality individuals. [source] Time , size tradeoffs: a phylogenetic comparative study of flowering time, plant height and seed mass in a north-temperate floraOIKOS, Issue 3 2008Kjell Bolmgren Parents face a timing problem as to when they should begin devoting resources from their own growth and survival to mating and offspring development. Seed mass and number, as well as maternal survival via plant size, are dependent on time for development. The time available in the favorable season will also affect the size of the developing juveniles and their survival through the unfavorable season. Flowering time may thus represent the outcome of such a time partitioning problem. We analyzed correlations between flowering onset time, seed mass, and plant height in a north-temperate flora, using both cross-species comparisons and phylogenetic comparative methods. Among perennial herbs, flowering onset time was negatively correlated with seed mass (i.e. plants with larger seeds started flowering earlier) while flowering onset time was positively correlated with plant height. Neither of these correlations was found among woody plants. Among annual plants, flowering onset time was positively correlated with seed mass. Cross-species and phylogenetically informed analyses largely agreed, except that flowering onset time was also positively correlated with plant height among annuals in the cross-species analysis. The different signs of the correlations between flowering onset time and seed mass (compar. gee regression coefficient=,7.8) and flowering onset time and plant height (compar. gee regression coefficient=+30.5) for perennial herbs, indicate that the duration of the growth season may underlie a tradeoff between maternal size and offspring size in perennial herbs, and we discuss how the partitioning of the season between parents and offspring may explain the association between early flowering and larger seed mass among these plants. [source] Competition as a selective mechanism for larger offspring size in guppiesOIKOS, Issue 1 2008Farrah Bashey Highly competitive environments are predicted to select for larger offspring. Guppies Poecilia reticulata from low-predation populations have evolved to make fewer, larger offspring than their counterparts from high-predation populations. As predation co-varies with the strength of competition in natural guppy populations, here I present two laboratory experiments that evaluate the role of competition in selecting for larger offspring size. In the first experiment, paired groups of large and small newborns from either a high- or a low-predation population were reared in mesocosms under a high- or a low-competition treatment. While large newborns retained their size advantage over small newborns in both treatments, newborn size increased growth only in the high-competition treatment. Moreover, the increase in growth with size was greater in guppies derived from the low-predation population. In the second experiment, pairs of large and small newborns were reared in a highly competitive environment until reproductive maturity. Small size at birth delayed maturation and the effect of birth size on male age of maturity was greater in the low-predation population. These results support the importance of competition as a selective mechanism in offspring size evolution. [source] Geographic variation in offspring size of a widespread lizard (Takydromus septentrionalis): importance of maternal investmentBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2010WEI-GUO DU Geographic variation in offspring size is widespread, but the proximate causes of this variation have not yet been explicitly determined. We compared egg size and egg contents among five populations of a lizard (Takydromus septentrionalis, Günther, 1864) along a latitudinal gradient, and incubated eggs at two temperatures to determine the influence of maternal investment and incubation temperature on offspring size. The mean values for female size and egg size were both greater in the two northern populations (Chuzhou and Anji) than in the three southern populations (Lishui, Dongtou, and Ningde). The larger eggs were entirely attributable to the body size of females in the Anji population, but their increased size also stemmed from further enlargement of egg size relative to female body size in Chuzhou, the northernmost population sampled in this study. Eggs of the Chuzhou population contained more yolk and less water than those of southern populations. Despite the lower lipid content in the yolk, eggs from the Chuzhou population had higher energy contents than those from the two southern populations, owing to the larger egg size and increased volume of yolk. Hatchling size was not affected by incubation temperature, but differed significantly among populations, with hatchlings being larger in the Chuzhou population than in the other populations. Our data provide an inference that oviparous reptiles from cold climates may produce larger offspring, not only by increasing egg size but also by investing more energy into their eggs. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101, 59,67. [source] Guppies control offspring size at birth in response to differences in population sex ratioBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2010MIGUEL BARBOSA Females that invest adaptively in their offspring are predicted to channel more resources to the sex that will be at an advantage in the prevailing environmental conditions. Here, we report, for the first time, that female Trinidadian guppy, Poecilia reticulata, respond in reproductively distinct ways when faced with differences in operational sex ratio. We show that females assigned to a female-biased sex ratio produce larger male offspring than females in an environment in which males predominate. Given the link between size at birth and fitness, and the marked reproductive skew in this species, larger male offspring are expected to have reproductive advantages in guppy populations with an excess of females. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 414,419. [source] Offspring size and survival in the frog Rana latastei: from among-population to within-clutch variationBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2009GENTILE FRANCESCO FICETOLA Egg size is considered to be a major maternal effect for offspring in oviparous organisms. It has profound consequences on fitness, and differences in egg size are viewed as plastic responses to environmental variability. However, it is difficult to identify the effect of egg size per se because egg size can covary with genetic features of the mother and with other nongenetic factors. We analysed the relationship between offspring starting size (i.e. a proxy of egg size) and larval survival in the frog Rana latastei. We analysed this relationship: (1) among five populations at different altitudes; (2) among clutches laid from different females; and (3) among siblings within clutches, to evaluate the effect of starting size. We observed differences among populations for offspring size, but starting size was not related to altitude or genetic diversity. Mortality was higher in populations and families with small average starting size; however, among siblings, the relationship between starting size and mortality was not verified. The relationship observed among clutches may therefore be caused by covariation between egg size and other effects. This suggests that the covariation between egg size and other effects can result in apparent relationships between egg size and fitness-related traits. Proximate and ultimate factors can cause the phenotypic variation of hatchlings in the wild, and key traits can be related to this variation, but the underlying causes require further investigation. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 845,853. [source] Identifying sources of variation in reproductive and life-history traits among five populations of a Chinese lizard (Takydromus septentrionalis, Lacertidae)BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2005WEI-GUO DU Research on life-history traits of squamate reptiles has focused on North American species, while Asian taxa have been virtually ignored. In order to understand general patterns in reptile life histories, we need a broader data base. Our study on the slender-bodied lacertid lizard Takydromus septentrionalis provides the first detailed information on factors responsible for intraspecific variation in reproductive output and life history in a Chinese reptile. Clutches of recently collected lizards from five widely separated localities in China revealed major divergences in female body size at maturation, mean adult female body size, body condition after oviposition, size-adjusted fecundity, relative clutch mass, and mass and shape of eggs. Most of these geographical differences persisted when the same groups of females were maintained in identical conditions in captivity. Additionally, reproductive frequency during maintenance under laboratory conditions differed according to the animals' place of origin. Thus, the extensive geographical variation in reproductive and life-history traits that occurs within T. septentrionalis is exhibited even in long-term captives, suggesting that proximate factors that vary among localities (local conditions of weather and food supply) are less important determinants of life-history variation than are intrinsic (presumably genetic) influences. The maternal abdominal volume available to hold the clutch may be one such factor, based on low levels of variation in Relative Clutch Mass among populations, and geographical variation in the position of trade-off lines linking offspring size to fecundity. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 85, 443,453. [source] CROSS-GENERATIONAL ENVIRONMENTAL EFFECTS AND THE EVOLUTION OF OFFSPRING SIZE IN THE TRINIDADIAN GUPPY POECILIA RETICULATAEVOLUTION, Issue 2 2006Farrah Bashey Abstract The existence of adaptive phenotypic plasticity demands that we study the evolution of reaction norms, rather than just the evolution of fixed traits. This approach requires the examination of functional relationships among traits not only in a single environment but across environments and between traits and plasticity itself. In this study, I examined the interplay of plasticity and local adaptation of offspring size in the Trinidadian guppy, Poecilia reticulata. Guppies respond to food restriction by growing and reproducing less but also by producing larger offspring. This plastic difference in offspring size is of the same order of magnitude as evolved genetic differences among populations. Larger offspring sizes are thought to have evolved as an adaptation to the competitive environment faced by newborn guppies in some environments. If plastic responses to maternal food limitation can achieve the same fitness benefit, then why has guppy offspring size evolved at all? To explore this question, I examined the plastic response to food level of females from two natural populations that experience different selective environments. My goals were to examine whether the plastic responses to food level varied between populations, test the consequences of maternal manipulation of offspring size for offspring fitness, and assess whether costs of plasticity exist that could account for the evolution of mean offspring size across populations. In each population, full-sib sisters were exposed to either a low- or high-food treatment. Females from both populations produced larger, leaner offspring in response to food limitation. However, the population that was thought to have a history of selection for larger offspring was less plastic in its investment per offspring in response to maternal mass, maternal food level, and fecundity than the population under selection for small offspring size. To test the consequences of maternal manipulation of offspring size for offspring fitness, I raised the offspring of low- and high-food mothers in either low- or high-food environments. No maternal effects were detected at high food levels, supporting the prediction that mothers should increase fecundity rather than offspring size in noncompetitive environments. For offspring raised under low food levels, maternal effects on juvenile size and male size at maturity varied significantly between populations, reflecting their initial differences in maternal manipulation of offspring size; nevertheless, in both populations, increased investment per offspring increased offspring fitness. Several correlates of plasticity in investment per offspring that could affect the evolution of offspring size in guppies were identified. Under low-food conditions, mothers from more plastic families invested more in future reproduction and less in their own soma. Similarly, offspring from more plastic families were smaller as juveniles and female offspring reproduced earlier. These correlations suggest that a fixed, high level of investment per offspring might be favored over a plastic response in a chronically low-resource environment or in an environment that selects for lower reproductive effort [source] |