Of Biological Activities (of + biological_activity)

Distribution by Scientific Domains

Kinds of Of Biological Activities

  • variety of biological activity


  • Selected Abstracts


    Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection

    MEDICINAL RESEARCH REVIEWS, Issue 1 2004
    Robert H. Cichewicz
    Abstract 3,-Hydroxy-lup-20(29)-en-28-oic acid (betulinic acid) is a pentacyclic lupane-type triterpene that is widely distributed throughout the plant kingdom. A variety of biological activities have been ascribed to betulinic acid including anti-inflammatory and in vitro antimalarial effects. However, betulinic acid is most highly regarded for its anti-HIV-1 activity and specific cytotoxicity against a variety of tumor cell lines. Interest in developing even more potent anti-HIV agents based on betulinic acid has led to the discovery of a host of highly active derivatives exhibiting greater potencies and better therapeutic indices than some current clinical anti-HIV agents. While its mechanism of action has not been fully determined, it has been shown that some betulinic acid analogs disrupt viral fusion to the cell in a post-binding step through interaction with the viral glycoprotein gp41 whereas others disrupt assembly and budding of the HIV-1 virus. With regard to its anticancer properties, betulinic acid was previously reported to exhibit selective cytotoxicity against several melanoma-derived cell lines. However, more recent work has demonstrated that betulinic acid is cytotoxic against other non-melanoma (neuroectodermal and malignant brain tumor) human tumor varieties. Betulinic acid appears to function by means of inducing apoptosis in cells irrespective of their p53 status. Because of its selective cytotoxicity against tumor cells and favorable therapeutic index, even at doses up to 500 mg/kg body weight, betulinic acid is a very promising new chemotherapeutic agent for the treatment of HIV infection and cancer. © 2003 Wiley Periodicals, Inc. Med Res Rev, 24, No. 1, 90,114, 2004 [source]


    Human urinary metabolite profile of tea polyphenols analyzed by liquid chromatography/electrospray ionization tandem mass spectrometry with data-dependent acquisition

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 10 2008
    Shengmin Sang
    Tea is rich in polyphenols and has a variety of biological activities. In order to better understand the biological effects of tea constituents on human health, markers for their exposure and their metabolic fates are needed. Previously, we have characterized several catechin metabolites in the blood and urine, but more information on the metabolite profile of tea polyphenols is needed. In the present study, the human urinary metabolite profile of tea polyphenols was investigated using liquid chromatography/electrospray ionization tandem mass spectrometry with data-dependent acquisition. With data-dependent MS/MS analysis by collecting the MS2 and MS3 spectra of the most intense ions in the sample, we identified more than twenty metabolites of tea polyphenols from human urine samples. (,)-Epigallocatechin (EGC) glucuronide, methylated EGC glucuronide, methylated EGC sulfate, (,)-epicatechin (EC) glucruronide, EC sulfate, methylated EC sulfate, as well as the glucuronide and sulfate metabolites of the ring-fission metabolites of tea catechins, 5-(3,,4,,5,-trihydroxyphenyl)- , -valerolactone (M4), 5-(3,,4,-dihydroxyphenyl)- , -valerolactone (M6) and 5-(3,,5,-dihydroxyphenyl)- , -valerolactone (M6,), were the major human urinary metabolites of tea polyphenols. To our knowledge, this is the first report of the direct simultaneous analysis of the human urinary metabolite profile of tea polyphenols using single sample analysis. This method can also be used for thorough investigations of the metabolite profiles of many other dietary constituents. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    The Effect of Korean Red Ginseng Extract on the Relaxation Response in Isolated Rabbit Vaginal Tissue and Its Mechanism

    THE JOURNAL OF SEXUAL MEDICINE, Issue 9 2008
    Sun-Ouck Kim MD
    ABSTRACT Introduction., Ginseng is an herbal medicine with a variety of biological activities. Aim., The purpose of this study was to investigate the effect of Korean red ginseng (KRG) extract on the relaxation response in isolated rabbit vaginal tissue and its mechanism as a potential therapeutic agent for female sexual dysfunction. Method., Strips of rabbit vagina were mounted in organ chambers to measure isometric tension. After the strips were precontracted with phenylephrine, the contractile responses to KRG extract (1,20 mg/mL), nitric oxide inhibitor (N[omega]-nitro-L-arginine methyl ester [L-NAME]), an inhibitor of soluble guanylate cyclase (methylene blue), an inhibitor of Ca2+ -activated K+ channels (tetraethylammonium [TEA]), and an adenosine triphosphate (ATP)-sensitive K+ channel blocker (glybenclamide) were examined. Main Outcome Measures., The relaxation of the vaginal tissue strip was assessed after treating KRG extract or other chemicals. Results., KRG (1,20 mg/mL) extract relaxed the vaginal tissue strip in a dose-dependent manner up to 85%. The relaxation effect was significantly inhibited by L-NAME (30 µM) and methylene blue (30 µM) (P < 0.05). In addition, KRG inhibited the contraction induced by depolarization with 10, 20, and 40 mM KCl. The KRG-induced relaxation effect was significantly inhibited by TEA (300 µM) (P < 0.05), and not by glybenclamide (30 µM). Conclusions., These data show that KRG extract has a relaxing effect on rabbit vaginal smooth muscle tissue. These effects might be mediated partly through the NO pathway and hyperpolarization via Ca2+ -activated K+ channels. Kim S-O, Kim MK, Lee H-S, Park JK, and Park K. The effect of Korean red ginseng extract on the relaxation response in isolated rabbit vaginal tissue and its mechanism. J Sex Med 2008;5:2079,2084. [source]


    Obovatol attenuates microglia-mediated neuroinflammation by modulating redox regulation

    BRITISH JOURNAL OF PHARMACOLOGY, Issue 8 2010
    Jiyeon Ock
    Background and purpose:, Obovatol isolated from the medicinal herb Magnolia obovata exhibits a variety of biological activities. Here, the effect of obovatol and its mechanism of action on microglial activation, neuroinflammation and neurodegeneration were investigated. Experimental approach:, In microglial BV-2 cells stimulated with lipopolysaccharide (LPS), we measured nitric oxide (NO) and cytokine production, and activation of intracellular signalling pathways by reverse transcription-polymerase chain reaction and Western blots. Cell death was assayed in co-cultures of activated microglia (with bacterial LPS) and neurons and in LPS-induced neuroinflammation in mice in vivo. Key results:, Obovatol inhibited microglial NO production with an IC50 value of 10 µM. Obovatol also inhibited microglial expression of proinflammatory cytokines and inducible nitric-oxide synthase, which was accompanied by the inhibition of multiple signalling pathways such as nuclear factor kappa B, signal transducers and activators of transcription 1, and mitogen-activated protein kinases. In addition, obovatol protected cultured neurons from microglial toxicity and inhibited neuroinflammation in mice in vivo. One molecular target of obovatol in microglia was peroxiredoxin 2 (Prx2), identified by affinity chromatography and mass spectrometry. Obovatol enhanced the reactive oxygen species (ROS)-scavenging activity of Prx2 in vitro, thereby suppressing proinflammatory signalling pathways of microglia where ROS plays an important role. Conclusions and implications:, Obovatol is not only a useful chemical tool that can be used to investigate microglial signalling, but also a promising drug candidate against neuroinflammatory diseases. Furthermore, our results indicate that Prx2 is a novel drug target that can be exploited for the therapeutic modulation of neuroinflammatory signalling. [source]


    The role of Gab family scaffolding adapter proteins in the signal transduction of cytokine and growth factor receptors

    CANCER SCIENCE, Issue 12 2003
    Keigo Nishida
    The Grb2-associated binder (Gab) family adapter proteins are scaffolding adapter molecules that display sequence similarity with Drosophila DOS (daughter of sevenless), which is a substrate for the protein tyrosine phosphatase Corkscrew. Gab proteins contain a pleckstrin homology (PH) domain and binding sites for SH2 and SH3 domains. A number of studies in multiple systems have implicated Gab in signaling via many different types of receptors, such as growth factor, cytokine, and antigen receptors, and via oncoproteins. Recent studies of Gab1 and Gab2 knockout mice have clearly indicated an important role for Gabs in vivo. Gab1-deficient mice die as embryos with multiple defects in placental, heart, skin, and muscle development. Gab2-deficient mice are viable, but have a defect in the mast cell lineages and in allergic reactions. Given the apparently central role played by Gab signaling via many receptors, delineating the precise mechanism(s) of Gab-mediated signaling is critical to understanding how cytokines, growth factors, and oncoproteins mediate a variety of biological activities: cell growth, differentiation, survival and malignant transformation. [source]