Home About us Contact | |||
Oxygen Stores (oxygen + store)
Selected AbstractsTufted ducks Aythya fuligula do not control buoyancy during divingJOURNAL OF AVIAN BIOLOGY, Issue 3 2005Lewis G. Halsey Work against buoyancy during submergence is a large component of the energy costs for shallow diving ducks. For penguins, buoyancy is less of a problem, however they still seem to trade-off levels of oxygen stores against the costs and benefits of buoyant force during descent and ascent. This trade-off is presumably achieved by increasing air sac volume and hence pre-dive buoyancy (Bpre) when diving deeper. Tufted ducks, Aythya fuligula, almost always dive with nearly full oxygen stores so these cannot be increased. However, the high natural buoyancy of tufted ducks guarantees a passive ascent, so they might be expected to decrease Bpre before particularly deep, long dives to reduce the energy costs of diving. Body heat lost to the water can also be a cause of substantial energy expenditure during a dive, both through dissipation to the ambient environment and through the heating of ingested food and water. Thus dive depth (dd), duration and food type can influence how much heat energy is lost during a dive. The present study investigated the relationship between certain physiological and behavioural adjustments by tufted ducks to dd and food type. Changes in Bpre, deep body temperature (Tb) and dive time budgeting of four ducks were measured when diving to two different depths (1.5 and 5.7 m), and for two types of food (mussels and mealworms). The hypothesis was that in tufted ducks, Bpre decreases as dd increases. The ducks did not change Bpre in response to different diving depths, and thus the hypothesis was rejected. Tb was largely unaffected by dives to either depth. However, diving behaviour changed at the greater dd, including an increase in dive duration and vertical descent speed. Behaviour also changed depending on the food type, including an increase in foraging duration and vertical descent speed when mussels were present. Behavioural changes seem to represent the major adjustment made by tufted ducks in response to changes in their diving environment. [source] Swimming speed and foraging strategies of New Zealand sea lions (Phocarctos hookeri)JOURNAL OF ZOOLOGY, Issue 2 2001D. E. Crocker Abstract Lactating New Zealand sea lions (Phocarctos hookeri) have recently been reported to be the longest and deepest-diving otariid. An unusually large proportion of dives exceeded a theoretical aerobic dive limit, predicted from estimated oxygen stores and measurements of diving metabolic rate. We investigated swimming speed, a key variable in both the management of oxygen stores and foraging strategies, and its relation to diving behaviour in New Zealand sea lions. Diving behaviour was nearly continuous with short inter-dive intervals. Mean diving swimming speeds ranged from 1.6 to 2.4 m/s. Mean surface swimming speeds ranged from 0.9 to 1.8 m/s and were significantly lower than diving speeds in all subjects. New Zealand sea lions spend significant but variable amounts of time resting at the surface. Diving and swimming speed patterns were consistent with foraging on the benthos. Time in the foraging zone was maintained in deeper dives by increasing dive duration. This increased duration cannot be accounted for by a decreased metabolic rate resulting from slower swimming speeds, as speeds increased with the maximum depth of dives. Patterns of swimming speed and acceleration suggest the use of a gliding phase during descent. For most females, the extended duration of deeper dives did not impact on surface times, suggesting the use of aerobic metabolism. Females exhibited significantly slower swim speeds during the bottom segments of foraging dives than during descent or ascent. These findings suggest that swimming behaviour should be considered a critical component when modelling energetic costs for diving animals. [source] MYSTERIES OF ADAPTATION TO HYPOXIA AND PRESSURE IN MARINE MAMMALS The Kenneth S. Norris Lifetime Achievement Award LectureMARINE MAMMAL SCIENCE, Issue 3 2006Gerald L. Kooyman Presented on 12 December 2005 San Diego, California Abstract This paper reviews past and current work on diving behavior, effects of pressure, and the aerobic diving limit from the perspective of the Ken Norris Lifetime Achievement Award. Because of the influence of Norris to marine mammalogy in general, and to my career in particular, I want to emphasize the important tradition of mentors and colleagues as keystones to a successful career in science, and ultimately to the success of science itself. These two related activities are illustrated by studies on marine mammals that were conducted in an endeavor to understand: (1) the behavioral traits associated with deep diving, (2) the mechanical and physiological effects of pressure during routine dives to great depth, and (3) the degree of oxygen depletion that they routinely endure while diving. The search for answers has resulted in numerous physiological and ecological experiments, along with accompanying theoretical analyses. Currently it appears that some deep-diving mammals may suffer from bends, and some may resort more often than what seems physiologically possible to anaerobic metabolism while diving. Above all, the way divers manage their nitrogen and oxygen stores remains a mystery. [source] |