Oxygen Solubility (oxygen + solubility)

Distribution by Scientific Domains


Selected Abstracts


Halotaxis of cyanobacteria in an intertidal hypersaline microbial mat

ENVIRONMENTAL MICROBIOLOGY, Issue 3 2010
Katharina Kohls
Summary An intertidal hypersaline cyanobacterial mat from Abu Dhabi (United Arab Emirates) exhibited a reversible change in its surface colour within several hours upon changes in salinity of the overlying water. The mat surface was orange-reddish at salinities above 15% and turned dark green at lower salinities. We investigated this phenomenon using a polyphasic approach that included denaturing gradient gel electrophoresis, microscopy, high-performance liquid chromatography, hyperspectral imaging, absorption spectroscopy, oxygen microsensor measurements and modelling of salinity dynamics. Filaments of Microcoleus chthonoplastes, identified based on 16S rRNA sequencing and morphology, were found to migrate up and down when salinity was decreased below or increased above 15%, respectively, causing the colour change of the mat uppermost layer. Migration occurred in light and in the dark, and could be induced by different salts, not only NaCl. The influence of salinity-dependent and independent physico-chemical parameters, such as water activity, oxygen solubility, H2S, gravity and light, was excluded, indicating that the observed migration was due to a direct response to salt stress. We propose to term this salinity-driven cyanobacterial migration as ,halotaxis', a process that might play a vital role in the survival of cyanobacteria in environments exposed to continuous salinity fluctuations such as intertidal flats. [source]


Thermal influence of urban groundwater recharge from stormwater infiltration basins

HYDROLOGICAL PROCESSES, Issue 12 2009
Arnaud Foulquier
Abstract Groundwater warming below cities has become a major environmental issue; but the effect of distinct local anthropogenic sources of heat on urban groundwater temperature distributions is still poorly documented. Our study addressed the local effect of stormwater infiltration on the thermal regime of urban groundwater by examining differences in water temperature beneath stormwater infiltration basins (SIB) and reference sites fed exclusively by direct infiltration of rainwater at the land surface. Stormwater infiltration dramatically increased the thermal amplitude of groundwater at event and season scales. Temperature variation at the scale of rainfall events reached 3 °C and was controlled by the interaction between runoff amount and difference in temperature between stormwater and groundwater. The annual amplitude of groundwater temperature was on average nine times higher below SIB (range: 0·9,8·6 °C) than at reference sites (range: 0,1·2 °C) and increased with catchment area of SIB. Elevated summer temperature of infiltrating stormwater (up to 21 °C) decreased oxygen solubility and stimulated microbial respiration in the soil and vadose zone, thereby lowering dissolved oxygen (DO) concentration in groundwater. The net effect of infiltration on average groundwater temperature depended upon the seasonal distribution of rainfall: groundwater below large SIB warmed up (+0·4 °C) when rainfall occurred predominantly during warm seasons. The thermal effect of stormwater infiltration strongly attenuated with increasing depth below the groundwater table indicating advective heat transport was restricted to the uppermost layers of groundwater. Moreover, excessive groundwater temperature variation at event and season scales can be attenuated by reducing the size of catchment areas drained by SIB and by promoting source control drainage systems. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Epoxy,siloxane hybrid coatings by a dual-curing process

ADVANCES IN POLYMER TECHNOLOGY, Issue 2 2009
Giulio Malucelli
Abstract Coatings based on a hybrid organic,inorganic epoxy system were prepared by a dual-curing mechanism, via cationic photopolymerization in the first step at room temperature and a subsequent hydrolysis/condensation reaction of a trialkoxy-silane compound (sol,gel process) at high temperature. To this end, a high Tg epoxy resin (3,4-epoxycyclohexylmethyl-3,-cyclohexenyl-methyl adipate, UVR 6128) was added in increasing amounts to a precursor for the inorganic-like phase (3,4-epoxycyclohexylethyltrimethoxysilane, EETMOS). The mixture contained triphenylsulfoniumhexafluoroantimonate as a cationic photoinitiator. By this method, the strongly acid environment generated by the photolysis of the triarylsolfunium salt in the first step induces the hydrolysis of EETMOS alkoxy-silane groups. The films produced in the first step of the process were thermal treated to promote the condensation reactions of the siloxane moieties. The kinetics of the reactions of photopolymerization and condensation was investigated. It was found that the presence of EETMOS increases both the polymerization rate and the final consumption of epoxy groups. Thermogravimetric analyses performed in air have revealed an increased stability of the hybrid coatings with respect to the films produced from formulations without EETMOS. A significant increase in surface hardness was also observed for the hybrid coatings. The thermo-mechanical properties were found to be strongly affected by the temperature used in the thermally induced reactions in the second step. The hybrid coatings on a low-density polyethylene substrate were found to decrease the diffusivity of oxygen and to increase the oxygen solubility within the coating. © 2009 Wiley Periodicals, Inc. Adv Polym Techn 28:77,85, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20149 [source]


Gas permeation related to the moisture sorption in films of glassy hydrophilic polymers

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2010
F.L. Laksmana
Abstract The purpose of this article is to elucidate the effect of integral sorption of moisture on gas permeation in glassy hydrophilic polymers. The oxygen and the simultaneous moisture sorption into various hydroxypropyl methylcellulose (HPMC) films were measured under a wide range of relative humidities using sorption analyzer equipment. Correspondingly, the oxygen permeability at different ambient conditions was measured using an oxygen detector. The solubility of oxygen in the HPMC film was found to be affected by the amount of water and therefore by the water state. At low moisture content, the water molecules are present as bound water, which promotes the sorption of oxygen in the HPMC films. At moisture content higher than 5%, water clusters are rapidly formed, which increase the affinity of HPMC polymer towards water rather than towards oxygen molecules, resulting in a decrease of oxygen solubility in the polymer. This was found to be the governing factor for the reduction in the oxygen permeability in glassy HPMC films at high water activity. This proposes a specific interaction between moisture sorption and oxygen transport in coating films like HPMC, which is of important aspect in the coating design and formulation. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


High-Temperature Oxidation Behavior of High-Purity ,-, ,-, and Mixed Silicon Nitride Ceramics

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2002
M. Backhaus-Ricoult
High-temperature oxidation behavior, microstructural evolution, and oxidation kinetics of additive-free ,-, ,-, and mixed silicon nitride ceramics is investigated. The oxidation rate of the ceramics depends on the allotropic ratio; best oxidation resistance is achieved for ceramics rich in ,-phase. Variations in the oxidation kinetics are directly related to average grain size and glass distribution in the oxidation scale. The oxygen contents incorporated into the Si3N4 phase before its dissolution at the oxidation front affects the local glass composition and thereby yields nucleation and growth rates of SiO2 crystallites within the glass phase and a final oxidation scale microstructure, which depend on the incorporated oxygen contents. For the ,-polymorph, the dynamic oxygen solubility is found to remain negligible; therefore, a nitrogen-rich glass forms at the oxidation front, which promotes devitrification and yields a scale with small grain size and thin intergranular glass films. ,-Si3N4 is observed to form oxygen-rich solid solutions on oxidation, which are in contact with silicon oxynitride or oxygen-rich glass. Nucleation of cristobalite in the latter is sluggish, yielding coarse-grained oxidation scales with thick intergranular glass film. [source]


Ratiometric Singlet Oxygen Nano-optodes and Their Use for Monitoring Photodynamic Therapy Nanoplatforms

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 6 2005
Youfu Cao
ABSTRACT Ratiometric photonic explorers for bioanalysis with biologically localized embedding (PEBBLE) nanoprobes have been developed for singlet oxygen, using organically modified silicate (ORMOSIL) nanoparticles as the matrix. A crucial aspect of these ratiometric singlet-oxygen fluorescent probes is their minute size. The ORMOSIL nanoparticles are prepared via a sol-gel,based process and the average diameter of the resultant particles is about 160 nm. These sensors incorporate the singlet-oxygen,sensitive 9,10-dimethyl anthracene as an indicator dye and a singlet-oxygen,insensitive dye, octaethylporphine, as a reference dye for ratiometric fluorescence-based analysis. We have found experimentally that these nanoprobes have much better sensitivity than does the conventional singlet-oxygen,free dye probe, anthracene-9, 10-dipropionic acid disodium salt. The much longer lifetime of singlet oxygen in the ORMOSIL matrix, compared to aqueous solutions, in addition to the relatively high singlet oxygen solubility because of the highly permeable structure and the hydrophobic nature of the outer shell of the ORMOSIL nanoparticles, results in an excellent overall response to singlet oxygen. These nanoprobes have been used to monitor the singlet oxygen produced by "dynamic nanoplatforms" that were developed for photodynamic therapy. The singlet oxygen nanoprobes could potentially be used to quantify the singlet oxygen produced by macrophages. [source]


The topologies of the charge densities in Zr and Ru

ACTA CRYSTALLOGRAPHICA SECTION A, Issue 2 2009
Travis E. Jones
We report on the atomic scale phenomena responsible for the variation of oxygen solubility in Zr and Ru. First-principles calculations reveal that the topologies of the charge densities in these hexagonal close-packed metals are distinct. Neither element was found to possess the topology of the prototype, Mg. There are 12 bond paths terminating at each Ru atom. These are the bonds between nearest neighbors. Only five bond paths terminate at each Zr atom and the Zr atoms are not bound to one another. Instead, they are bonded through non-nuclear maxima. As a result, channels of low charge density that can accommodate oxygen anions are present in Zr. [source]