Oxidized Cofactor (oxidized + cofactor)

Distribution by Scientific Domains


Selected Abstracts


The atomic resolution structure of human aldose reductase reveals that rearrangement of a bound ligand allows the opening of the safety-belt loop

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 6 2007
Marianna Biadene
The crystal structure of human aldose reductase in complex with citrate has been determined to a resolution of 0.82,Å. The difference electron density for H atoms unequivocally shows that the cofactor is in the oxidized state corresponding to the situation after the catalytic event has occurred. A citrate molecule bound to the active site has been modelled in two different conformations. These two conformations correlate with a fully closed and a partially open conformation of the so-called safety-belt loop (Gly213,Ser226). The open conformation is observed for the first time with the cofactor bound to the protein and may be related to the initial phase of the opening of the safety belt. The structure suggests that after the catalytic event, a rearrangement of a bound ligand can trigger the opening of the safety-belt loop, thus initiating the release of the oxidized cofactor. [source]


Design of a cytochrome P450BM3 reaction system linked by two-step cofactor regeneration catalyzed by a soluble transhydrogenase and glycerol dehydrogenase

BIOTECHNOLOGY PROGRESS, Issue 5 2009
Tsuyoshi Mouri
Abstract A cytochrome P450BM3-catalyzed reaction system linked by a two-step cofactor regeneration was investigated in a cell-free system. The two-step cofactor regeneration of redox cofactors, NADH and NADPH, was constructed by NAD+ -dependent bacterial glycerol dehydrogenase (GLD) and bacterial soluble transhydrogenase (STH) both from Escherichia coli. In the present system, the reduced cofactor (NADH) was regenerated by GLD from the oxidized cofactor (NAD+) using glycerol as a sacrificial cosubstrate. The reducing equivalents were subsequently transferred to NADP+ by STH as a cycling catalyst. The resultant regenerated NADPH was used for the substrate oxidation catalyzed by cytochrome P450BM3. The initial rate of the P450BM3-catalyzed reaction linked by the two-step cofactor regeneration showed a slight increase (approximately twice) when increasing the GLD units 10-fold under initial reaction conditions. In contrast, a 10-fold increase in STH units resulted in about a 9-fold increase in the initial reaction rate, implying that transhydrogenation catalyzed by STH was the rate-determining step. In the system lacking the two-step cofactor regeneration, 34% conversion of 50 ,M of a model substrate (p-nitrophenoxydecanoic acid) was attained using 50 ,M NADPH. In contrast, with the two-step cofactor regeneration, the same amount of substrate was completely converted using 5 ,M of oxidized cofactors (NAD+ and NADP+) within 1 h. Furthermore, a 10-fold dilution of the oxidized cofactors still led to approximately 20% conversion in 1 h. These results indicate the potential of the combination of GLD and STH for use in redox cofactor recycling with catalytic quantities of NAD+ and NADP+. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source]


Phosphite-driven, [Cp*Rh(bpy)(H2O)]2+ -catalyzed reduction of nicotinamide and flavin cofactors: characterization and application to promote chemoenzymatic reduction reactions

APPLIED ORGANOMETALLIC CHEMISTRY, Issue 5 2010
Maria Mifsud Grau
Abstract The organometallic compound [Cp*Rh(bpy)(H2O)]2+ is a versatile catalyst for the in situ regeneration of reduced nicotinamides and flavins by catalyzing the electron transfer between the cathode or formate to the oxidized cofactors and prosthetic groups. In the present contribution we demonstrate the feasibility of phosphite as an alternative source of reducing equivalents. Thus, [Cp*Rh(bpy)(H2O)]2+ combines the catalytic activities of hydrogenases, formate and phosphite dehydrogenases in one catalyst. The catalytic properties of this novel regeneration approach are investigated, demonstrating that the general catalytic properties of [Cp*Rh(bpy)(H2O)]2+ are preserved. The principal applicability to promote alcoholdehydrogenase-catalyzed reduction reactions is demonstrated. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Design of a cytochrome P450BM3 reaction system linked by two-step cofactor regeneration catalyzed by a soluble transhydrogenase and glycerol dehydrogenase

BIOTECHNOLOGY PROGRESS, Issue 5 2009
Tsuyoshi Mouri
Abstract A cytochrome P450BM3-catalyzed reaction system linked by a two-step cofactor regeneration was investigated in a cell-free system. The two-step cofactor regeneration of redox cofactors, NADH and NADPH, was constructed by NAD+ -dependent bacterial glycerol dehydrogenase (GLD) and bacterial soluble transhydrogenase (STH) both from Escherichia coli. In the present system, the reduced cofactor (NADH) was regenerated by GLD from the oxidized cofactor (NAD+) using glycerol as a sacrificial cosubstrate. The reducing equivalents were subsequently transferred to NADP+ by STH as a cycling catalyst. The resultant regenerated NADPH was used for the substrate oxidation catalyzed by cytochrome P450BM3. The initial rate of the P450BM3-catalyzed reaction linked by the two-step cofactor regeneration showed a slight increase (approximately twice) when increasing the GLD units 10-fold under initial reaction conditions. In contrast, a 10-fold increase in STH units resulted in about a 9-fold increase in the initial reaction rate, implying that transhydrogenation catalyzed by STH was the rate-determining step. In the system lacking the two-step cofactor regeneration, 34% conversion of 50 ,M of a model substrate (p-nitrophenoxydecanoic acid) was attained using 50 ,M NADPH. In contrast, with the two-step cofactor regeneration, the same amount of substrate was completely converted using 5 ,M of oxidized cofactors (NAD+ and NADP+) within 1 h. Furthermore, a 10-fold dilution of the oxidized cofactors still led to approximately 20% conversion in 1 h. These results indicate the potential of the combination of GLD and STH for use in redox cofactor recycling with catalytic quantities of NAD+ and NADP+. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source]