Oxidative Modifications (oxidative + modifications)

Distribution by Scientific Domains


Selected Abstracts


Reactive oxygen species induce RNA damage in human atherosclerosis

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 5 2004
W. Martinet
Abstract Background, Reactive oxygen species (ROS)-induced DNA damage has recently been identified in both human and experimental atherosclerosis. This study was undertaken to investigate whether RNA damage occurs in human atherosclerotic plaques and whether this could be related to oxidative stress. Materials and methods, The integrity of total RNA isolated from carotid endarterectomy specimens (n = 20) and nonatherosclerotic mammary arteries (n = 20) was analyzed using an Agilent 2100 Bioanalyser (Agilent Technologies, Palo Alto, CA). Oxidative modifications of RNA were detected by immunohistochemistry. Results, Eleven out of 20 atherosclerotic plaques showed a significant reduction of the 18S/28S rRNA peaks and a shift in the RNA electropherogram to shorter fragment sizes. In contrast, all mammary arteries showed good-quality RNA with clear 18S and 28S rRNA peaks. Strong nuclear and cytoplasmic immunoreactivity for oxidative damage marker 7,8-dihydro-8-oxo-2,-guanosine (8-oxoG) could be detected in the entire plaque in smooth muscle cells (SMCs), macrophages and endothelial cells, but not in SMCs of adjacent normal media or in mammary arteries. Cytoplasmic 8-oxoG staining in the plaque clearly diminished when tissue sections were pretreated with RNase A, suggesting oxidative base damage of RNA. In vitro treatment of total RNA with ROS-releasing compounds induced RNA degradation. Conclusion, Both loss of RNA integrity and 8-oxoG oxidative modifications were found in human atherosclerotic plaques. Because RNA damage may affect in vitro transcript quantification, RT-PCR results must be interpreted cautiously if independent experimental validation (e.g. evaluation of RNA integrity) is lacking. [source]


Susceptibility of isolated myofibrils to in vitro glutathionylation: Potential relevance to muscle functions,

CYTOSKELETON, Issue 2 2010
Chiara Passarelli
Abstract In this study we investigated the molecular mechanism of glutathionylation on isolated human cardiac myofibrils using several pro-glutathionylating agents. Total glutathionylated proteins appeared significantly enhanced with all the pro-oxidants used. The increase was completely reversed by the addition of a reducing agent, demonstrating that glutathione binding occurs by a disulfide and that the process is reversible. A sensitive target of glutathionylation was ,-actin, showing a different reactivity to the several pro-glutathionylating agents by ELISA. Noteworthy, myosin although highly sensitive to the in vitro glutathionylation does not represent the primary glutathionylation target in isolated myofibrils. Light scattering measurements of the glutathionylated ,-actin showed a slower polymerisation compared to the non-glutathionylated protein and force development was depressed after glutathionylation, when the myofibrils were mounted in a force recording apparatus. Interestingly, confocal laser scanning microscopy of cardiac cryosections indicated, for the first time, the constitutive glutathionylation of ,-cardiac actin in human heart. Due to the critical location of ,-actin in the contractile machinery and to its susceptibility to the oxidative modifications, glutathionylation may represent a mechanism for modulating sarcomere assembly and muscle functionality under patho-physiological conditions in vivo. © 2009 Wiley-Liss, Inc. [source]


Detection of carbonyl-modified proteins in interfibrillar rat mitochondria using N, -aminooxymethylcarbonylhydrazino- D -biotin as an aldehyde/keto-reactive probe in combination with Western blot analysis and tandem mass spectrometry

ELECTROPHORESIS, Issue 6 2008
Woon-Gye Chung
Abstract There is now a large body of supporting data available that links oxidative modifications of proteins to a large number of diseases, degenerative disorders and aging. However, the detailed analysis of oxidative protein modifications remains challenging. Here, we report a new efficient method for identification of oxidatively modified proteins in complex biological samples which is based on the use of an aldehyde-reactive probe, N,-aminooxymethylcarbonylhydrazino- D -biotin (ARP), in combination with Western-type analyses and MS. The biotinylated hydroxylamine derivative forms a chemically stable oxime derivative with the aldehyde/keto group found in carbonyl-modified proteins. The biotin tag is detected by avidin affinity staining. ARP-positive proteins are subsequently subjected to in-gel trypsinization and MS/MS for protein identification. We demonstrate the usefulness of the method for the analysis of protein extracts obtained from interfibrillar heart mitochondria (IFM) from young and old rats. In this study, we identified as putative major protein targets of oxidative modifications the mitochondrial matrix protein, aconitase, the inner mitochondrial membrane protein, ADP/ATP translocase, and constituents of the electron transport chain complexes IV and V. An age-related increase of carbonyl levels was found for aconitase and ATP synthase. [source]


Reactive oxygen species induce RNA damage in human atherosclerosis

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 5 2004
W. Martinet
Abstract Background, Reactive oxygen species (ROS)-induced DNA damage has recently been identified in both human and experimental atherosclerosis. This study was undertaken to investigate whether RNA damage occurs in human atherosclerotic plaques and whether this could be related to oxidative stress. Materials and methods, The integrity of total RNA isolated from carotid endarterectomy specimens (n = 20) and nonatherosclerotic mammary arteries (n = 20) was analyzed using an Agilent 2100 Bioanalyser (Agilent Technologies, Palo Alto, CA). Oxidative modifications of RNA were detected by immunohistochemistry. Results, Eleven out of 20 atherosclerotic plaques showed a significant reduction of the 18S/28S rRNA peaks and a shift in the RNA electropherogram to shorter fragment sizes. In contrast, all mammary arteries showed good-quality RNA with clear 18S and 28S rRNA peaks. Strong nuclear and cytoplasmic immunoreactivity for oxidative damage marker 7,8-dihydro-8-oxo-2,-guanosine (8-oxoG) could be detected in the entire plaque in smooth muscle cells (SMCs), macrophages and endothelial cells, but not in SMCs of adjacent normal media or in mammary arteries. Cytoplasmic 8-oxoG staining in the plaque clearly diminished when tissue sections were pretreated with RNase A, suggesting oxidative base damage of RNA. In vitro treatment of total RNA with ROS-releasing compounds induced RNA degradation. Conclusion, Both loss of RNA integrity and 8-oxoG oxidative modifications were found in human atherosclerotic plaques. Because RNA damage may affect in vitro transcript quantification, RT-PCR results must be interpreted cautiously if independent experimental validation (e.g. evaluation of RNA integrity) is lacking. [source]


Protective effects of endomorphins, endogenous opioid peptides in the brain, on human low density lipoprotein oxidation

FEBS JOURNAL, Issue 6 2006
Xin Lin
Neurodegenerative disorders are associated with oxidative stress. Low density lipoprotein (LDL) exists in the brain and is especially sensitive to oxidative damage. Oxidative modification of LDL has been implicated in the pathogenesis of neurodegenerative diseases. Therefore, protecting LDL from oxidation may be essential in the brain. The antioxidative effects of endomorphin 1 (EM1) and endomorphin 2 (EM2), endogenous opioid peptides in the brain, on LDL oxidation has been investigated in vitro. The peroxidation was initiated by either copper ions or a water-soluble initiator 2,2,-azobis(2-amidinopropane hydrochloride) (AAPH). Oxidation of the LDL lipid moiety was monitored by measuring conjugated dienes, thiobarbituric acid reactive substances, and the relative electrophoretic mobility. Low density lipoprotein oxidative modifications were assessed by evaluating apoB carbonylation and fragmentation. Endomorphins markedly and in a concentration-dependent manner inhibited Cu2+ and AAPH induced the oxidation of LDL, due to the free radical scavenging effects of endomorphins. In all assay systems, EM1 was more potent than EM2 and l -glutathione, a major intracellular water-soluble antioxidant. We propose that endomorphins provide protection against free radical-induced neurodegenerative disorders. [source]


Histidine and not tyrosine is required for the Peroxide-induced formation of haem to protein cross-linked myoglobin

IUBMB LIFE, Issue 8-9 2007
Brandon J. Reeder
Abstract Peroxide-induced oxidative modifications of haem proteins such as myoglobin and haemoglobin can lead to the formation of a covalent bond between the haem and globin. These haem to protein cross-linked forms of myoglobin and haemoglobin are cytotoxic and have been identified in pathological conditions in vivo. An understanding of the mechanism of haem to protein cross-link formation could provide important information on the mechanisms of the oxidative processes that lead to pathological complications associated with the formation of these altered myoglobins and haemoglobins. We have re-examined the mechanism of the formation of haem to protein cross-link to test the previously reported hypothesis that the haem forms a covalent bond to the protein via the tyrosine 103 residue (Catalano, C. E., Choe, Y. S., Ortiz de Montellano, P. R., J. Biol. Chem. 1989, 10534 - 10541). Comparison of native horse myoglobin, recombinant sperm whale myoglobin and Tyr103 , Phe sperm whale mutant shows that, contrary to the previously proposed mechanism of haem to protein cross-link formation, the absence of tyrosine 103 has no impact on the formation of haem to protein cross-links. In contrast, we have found that engineered myoglobins that lack the distal histidine residue either cannot generate haem to protein cross-links or show greatly suppressed levels of modified protein. Moreover, addition of a distal histidine to myoglobin from Aplysia limacina, that naturally lacks this histidine, restores the haem protein's capacity to generate haem to protein cross-links. The distal histidine is, therefore, vital for the formation of haem to protein cross-link and we explore this outcome. [source]


Red blood cells in the metabolism of nitric oxide-derived peroxynitrite

IUBMB LIFE, Issue 10 2006
Natalia Romero
Abstract In this review we have analyzed the reactions of nitric oxide (·NO) with superoxide radical (O2·-) at the vascular compartment which results in limitation of the bioavailability of ·NO and the formation of peroxynitrite (ONOO-), a strong oxidant species. The intravascular formation of peroxynitrite can result in oxidative modifications of plasma and vessel wall proteins including the formation of protein-3-nitrotyrosine. The role of red blood cells (RBC) and oxyhemoglobin in the metabolism of intravascular peroxynitrite will be discussed. While RBC constitute an important 'sink' of both ·NO and peroxynitrite, redox reactions of these species with oxyhemoglobin may in part contribute to erythrocyte aging. The intravascular formation, reactions and detoxification of peroxynitrite are revealed as important factors controlling vascular dysfunction and degeneration in a variety of pathophysiologically-relevant conditions. iubmb Life, 58: 572-580, 2006 [source]


Molecular Mechanisms of Alcoholic Fatty Liver

ALCOHOLISM, Issue 2 2009
Vishnudutt Purohit
Alcoholic fatty liver is a potentially pathologic condition which can progress to steatohepatitis, fibrosis, and cirrhosis if alcohol consumption is continued. Alcohol exposure may induce fatty liver by increasing NADH/NAD+ ratio, increasing sterol regulatory element-binding protein-1 (SREBP-1) activity, decreasing peroxisome proliferator-activated receptor-, (PPAR-,) activity, and increasing complement C3 hepatic levels. Alcohol may increase SREBP-1 activity by decreasing the activities of AMP-activated protein kinase and sirtuin-1. Tumor necrosis factor-, (TNF-,) produced in response to alcohol exposure may cause fatty liver by up-regulating SREBP-1 activity, whereas betaine and pioglitazone may attenuate fatty liver by down-regulating SREBP-1 activity. PPAR-, agonists have potentials to attenuate alcoholic fatty liver. Adiponectin and interleukin-6 may attenuate alcoholic fatty liver by up-regulating PPAR-, and insulin signaling pathways while down-regulating SREBP-1 activity and suppressing TNF-, production. Recent studies show that paracrine activation of hepatic cannabinoid receptor 1 by hepatic stellate cell-derived endocannabinoids also contributes to the development of alcoholic fatty liver. Furthermore, oxidative modifications and inactivation of the enzymes involved in the mitochondrial and/or peroxisomal ,-oxidation of fatty acids could contribute to fat accumulation in the liver. [source]


Monounsaturated Fat and Cardiovascular Risk

NUTRITION REVIEWS, Issue 2006
Jose López-Miranda MD
On the basis of the information discussed in this review, we can conclude that the effects of a high intake of monounsaturated fatty acids (MUFA) from olive oil include a wide range of healthy benefits beyond improvement in cholesterol levels, suggesting that this type of diet has great potential in preventing cardiovascular disease. MUFA-enriched diets reduce insulin requirements and decrease plasma concentrations of glucose and insulin in type 2 diabetic patients, unlike high-saturated fatty acid and low-fat, high-carbohydrate diets. Moreover, some data show that this dietary model could have a hypotensive effect. There is also substantial evidence that oleic-enriched low-density lipoprotein (LDL) is more resistant to oxidative modifications and that dietary MUFA may influence various components and functions related to the endothelium. These include endothelium-dependent vasodilatation and a reduced capacity of oleicenriched LDL to promote the adhesion and chemotaxis of monocytes. On the other hand, a MUFA diet decreases the prothrombotic environment, modifying platelet adhesion, coagulation, and fibrinolysis. Its reducing effect on PAI-1 plasma levels is of particular relevance. This wide range of anti-atherogenic effects could explain the low rate of cardiovascular mortality found in Mediterranean countries, where there is a moderate to high supply of dietary MUFA. Future studies need to focus on uncovering the mechanisms by which the Mediterranean diet exerts its beneficial effects [source]


Redox signalling in cardiovascular disease

PROTEOMICS - CLINICAL APPLICATIONS, Issue 6 2008
Rebecca L. Charles
Abstract Oxidative stress has almost universally and unequivocally been implicated in the pathogenesis of all major diseases, including those of the cardiovascular system. Oxidative stress in cells and cardiovascular biology was once considered only in terms of injury, disease and dysfunction. However, it is now appreciated that oxidants are also produced in healthy tissues, and they function as signalling molecules transmitting information throughout the cell. Conversely, when cells move to a more reduced state, as can occur when oxygen is limiting, this can also result in alterations in the function of biomolecules and subsequently cells. At the centre of this ,redox signalling' are oxidoreductive chemical reactions involving oxidants or reductants post translationally modifying proteins. These structural alterations allow changes in cellular redox state to be coupled to alterations in cell function. In this review, we consider aspects of redox signalling in the cardiovascular system, focusing on the molecular basis of redox sensing by proteins and the array of post-translational oxidative modifications that can occur. In addition, we discuss studies utilising proteomic methods to identify redox-sensitive cardiac proteins, as well as those using this technology more broadly to assess redox signalling in cardiovascular disease. [source]