Home About us Contact | |||
Oxidative Cell Injury (oxidative + cell_injury)
Selected AbstractsPenicillium chrysogenum glucose oxidase , a study on its antifungal effectsJOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2004É. Leiter Abstract Aims:, Purification and characterization of the high molecular mass Candida albicans -killing protein secreted by Penicillium chrysogenum. Methods and Results:, The protein was purified by a combination of ultrafiltration, chromatofocusing and gel filtration. Enzymological characteristics [relative molecular mass (Mr) = 155 000, subunit structure ,2 with Mr,, = 76 000, isoelectric point (pI) = 5·4] were determined using SDS-PAGE and 2D-electrophoresis. N-terminal amino acid sequencing and homology search demonstrated that the antifungal protein was the glucose oxidase (GOX) of the fungus. The enzyme was cytotoxic for a series of bacteria, yeasts and filamentous fungi. Vitamin C (1·0 mg ml,1) prevented oxidative cell injuries triggered by 0·004 U GOX in Emericella nidulans cultures but bovine liver catalase was ineffective even at a GOX : catalase activity ratio of 0·004 : 200 U. A secondary inhibition of growth in E. nidulans cultures by the oxygen-depleting GOX,catalase system was likely to replace the primary inhibition exerted by H2O2. Conclusions:,Penicillium chrysogenum GOX possesses similar enzymological features to those described earlier for other Penicillium GOXs. Its cytotoxicity was dependent on the inherent antioxidant potential of the test micro-organisms. Significance and Impact of the Study:,Penicillium chrysogenum GOX may find future applications in glucose biosensor production, the disinfection of medical implants or in the food industry as an antimicrobial and/or preservative agent. [source] Paradoxical enhancement of oxidative cell injury by overexpression of heme oxygenase-1 in an anchorage-dependent cell ECV304JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2004Keiko Maruhashi Abstract There has been increasing evidence suggesting the potent anti-inflammatory roles of heme oxygenase-1 (HO-1) in protecting renal tubular epithelial cells, vascular endothelial cells, and circulating monocytes. Based on these findings, novel therapeutic interventions have been proposed to control the expression of endothelial HO-1 levels to ameliorate various vascular diseases. We evaluated the effect of HO-1 gene transfer into an anchorage-dependent cell, ECV304. Effect of HO-1 production on the cell injury induced by hydrogen peroxide was evaluated after hemin stimulation and after HO-1 gene transfection. Morphological changes and the induction of various anti-apoptotic proteins were examined at the same time. Levels of HO-1 expression were variable in different clones of HO-1-transfected ECV304 cells. Among these, the clones with moderate levels of HO-1 expression were significantly more resistant to oxidative stress. In contrast, those with the highest levels of HO-1 exhibited paradoxically enhanced susceptibility to oxidative injury. Interestingly, the cell survival after oxidative stress was in parallel with the levels of Bcl-2 expression and of fibronectin receptor, ,5 integrin. It is suggested from these results, that excessive HO-1 not only leads to enhanced cell injury, but also prolongs the repair process of the injured endothelial tissue. However, HO-1 reduces the oxidative cell injury and protects the endothelial cells, if its expression is appropriately controlled. © 2004 Wiley-Liss, Inc. [source] Chemistry and some biological effects of model melanoidins and pigments as Maillard intermediatesMOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 12 2006Fumitaka Hayase Abstract Various pigments were formed in the D -xylose-glycine reaction system. Blue pigments (Blue-M1 and Blue-M2) and red pigments (Red-M1 and Red-M2) were generated in the Maillard reaction. Blue-M2 is presented to have been generated by the reaction between Blue-M1, which involved two pyrrolopyrrole structures as the major blue pigment, and di- D -xyluloseglycine. We identified red pigments as the isomers of addition compounds of D -xyluloseglycine to condensated compound between pyrroropyrrole-2-carbaldehyde and pyrrole-2-carbaldehyde compounds. These pigments have polymerizing activities, suggesting that they are important Maillard reaction intermediates through the formation of melanoidins. Blue-M1 as well as melanoidins effectively suppressed the peroxidation of linoleic acid. The scavenging activity toward Blue-M1 on hydroxyl and DPPH radicals was also as strong as that of melanoidins. Furthermore, Blue-M1 prevents the oxidative cell injury. Therefore, Blue-M1 will be an antioxidant which protects against the oxidative stress in biological systems. Melanoidins induced IFN-, mRNA and IL-12 mRNA expressions in spleen cells exposed to allergen and in macrophage-like J774.1 cells, respectively. These findings suggest that melanoidins have suppressive effect on allergic reaction as a novel physiological effect. [source] |