Oxidase Subunit (oxidase + subunit)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Oxidase Subunit

  • c oxidase subunit
  • cytochrome c oxidase subunit
  • cytochrome oxidase subunit

  • Terms modified by Oxidase Subunit

  • oxidase subunit i
  • oxidase subunit i gene
  • oxidase subunit ii

  • Selected Abstracts


    Electrophoretic analysis of sequence variability in three mitochondrial DNA regions for ascaridoid parasites of human and animal health significance

    ELECTROPHORESIS, Issue 13 2008
    Ming-Wei Li
    Abstract Sequence variability in three mitochondrial DNA (mtDNA) regions, namely cytochrome c oxidase subunit 1 (cox1), NADH dehydrogenase subunits 1 and 4 (nad1 and nad4), among and within Toxocara canis, T. cati, T. malaysiensis, T. vitulorum and Toxascaris leonina from different geographical origins was examined by a mutation-scanning approach. A portion of the cox1 gene (pcox1), a portion of the nad1 and nad4 genes (pnad1 and pnad4) were amplified separately from individual ascaridoid nematodes by polymerase chain reaction and the amplicons analyzed by single-strand conformation polymorphism (SSCP). Representative samples displaying sequence variation in SSCP profiles were subjected to sequencing in order to define genetic markers for their specific identification and differentiation. While the intra-specific sequence variations within each of the five ascaridoid species were 0.2,3.7% for pcox1, 0,2.8% for pnad1 and 0,2.3% for pnad4, the inter-specific sequence differences were significantly higher, being 7.9,12.9% for pcox1, 10.7,21.1% for pnad1 and 12.9,21.7% for pnad4, respectively. Phylogenetic analyses based on the combined sequences of pcox1, pnad1 and pnad4 revealed that the recently described species T. malaysiensis was more closely related to T. cati than to T. canis. These findings provided mtDNA evidence for the validity of T. malaysiensis and also demonstrated clearly the usefulness and attributes of the mutation-scanning sequencing approach for studying the population genetic structures of these and other nematodes of socio-economic importance. [source]


    The mitochondrial genome of the wine yeast Hanseniaspora uvarum: a unique genome organization among yeast/fungal counterparts

    FEMS YEAST RESEARCH, Issue 1 2006
    Paraskevi V. Pramateftaki
    Abstract The complete sequence of the apiculate wine yeast Hanseniaspora uvarum mtDNA has been determined and analysed. It is an extremely compact linear molecule containing the shortest functional region ever found in fungi (11 094 bp long), flanked by Type 2 telomeric inverted repeats. The latter contained a 2704-bp-long subterminal region and tandem repeats of 839-bp units. In consequence, a population of mtDNA molecules that differed at the number of their telomeric reiterations was detected. The functional region of the mitochondrial genome coded for 32 genes, which included seven subunits of respiratory complexes and ATP synthase (the genes encoding for NADH oxidoreductase subunits were absent), two rRNAs and 23 tRNA genes which recognized codons for all amino acids. A single intron interrupted the cytochrome oxidase subunit 1 gene. A number of reasons contributed towards its strikingly small size, namely: (1) the remarkable size reduction (by >40%) of the rns and rnl genes; (2) that most tRNA genes and five of the seven protein-coding genes were the shortest among known yeast homologs; and (3) that the noncoding regions were restricted to 5.1% of the genome. In addition, the genome showed multiple changes in the orientation of transcription and the gene order differed drastically from other yeasts. When all protein coding gene sequences were considered as one unit and were compared with the corresponding molecules from all other complete mtDNAs of yeasts, the phylogenetic trees constructed robustly supported its placement basal to the yeast species of the ,Saccharomyces complex', demonstrating the advantage of this approach over single-gene or multigene approaches of unlinked genes. [source]


    Molecular phylogeny of Diabrotica beetles (Coleoptera: Chrysomelidae) inferred from analysis of combined mitochondrial and nuclear DNA sequences

    INSECT MOLECULAR BIOLOGY, Issue 4 2001
    T. L. Clark
    Abstract The phylogenetic relationships of thirteen Diabrotica (representing virgifera and fucata species groups) and two outgroup Acalymma beetle species (Coleoptera: Chrysomelidae) were inferred from the phylogenetic analysis of a combined data set of 1323 bp of mitochondrial DNA (mtDNA) cytochrome oxidase subunit 1 (COI) and the entire second internal transcribed spacer region (ITS-2) of nuclear ribosomal DNA of 362 characters. Species investigated were D. adelpha, D. balteata, D. barberi, D. cristata, D. lemniscata, D. longicornis, D. porracea, D. speciosa, D. undecimpunctata howardi, D. u. undecimpunctata, D. virgifera virgifera, D. v. zeae, D. viridula, and outgroup A. blandulum and A. vittatum. Maximum parsimony (MP), minimum evolution (ME), and maximum likelihood (ML) analyses of combined COI and ITS-2 sequences clearly place species into their traditional morphological species groups with MP and ME analyses resulting in identical topologies. Results generally confer with a prior work based on allozyme data, but within the virgifera species group, D. barberi and D. longicornis strongly resolve as sister taxa as well as monophyletic with the neotropical species, D. viridula, D. cristata and D. lemniscata also resolve as sister taxa. Both relationships are not in congruence with the prior allozyme-based hypothesis. Within the fucata species group, D. speciosa and D. balteata resolve as sister taxa. Results also strongly supported the D. virgifera and D. undecimpunctata subspecies complexes. Our proposed phylogeny provides some insight into current hypotheses regarding distribution status and evolution of various life history traits for Diabrotica. [source]


    New molecular data for tardigrade phylogeny, with the erection of Paramacrobiotus gen. nov.

    JOURNAL OF ZOOLOGICAL SYSTEMATICS AND EVOLUTIONARY RESEARCH, Issue 4 2009
    R. Guidetti
    Abstract Up to few years ago, the phylogenies of tardigrade taxa have been investigated using morphological data, but relationships within and between many taxa are still unresolved. Our aim has been to verify those relationships adding molecular analysis to morphological analysis, using nearly complete 18S ribosomal DNA gene sequences (five new) of 19 species, as well as cytochrome oxidase subunit 1 (COI) mitochondrial DNA gene sequences (15 new) from 20 species, from a total of seven families. The 18S rDNA tree was calculated by minimum evolution, maximum parsimony (MP) and maximum likelihood (ML) analyses. DNA sequences coding for COI were translated to amino acid sequences and a tree was also calculated by neighbour-joining, MP and ML analyses. For both trees (18S rDNA and COI) posterior probabilities were calculated by MrBayes. Prominent findings are as follows: the molecular data on Echiniscidae (Heterotardigrada) are in line with the phylogenetic relationships identifiable by morphological analysis. Among Eutardigrada, orders Apochela and Parachela are confirmed as sister groups. Ramazzottius (Hypsibiidae) results more related to Macrobiotidae than to the genera here considered of Hypsibiidae. Macrobiotidae and Macrobiotus result not monophyletic and confirm morphological data on the presence of at least two large groups within Macrobiotus. Using 18S rDNA and COI mtDNA genes, a new phylogenetic line has been identified within Macrobiotus, corresponding to the ,richtersi-areolatus group'. Moreover, cryptic species have been identified within the Macrobiotus,richtersi group' and within Richtersius. Some evolutionary lines of tardigrades are confirmed, but others suggest taxonomic revision. In particular, the new genus Paramacrobiotus gen. n. has been identified, corresponding to the phylogenetic line represented by the ,richtersi-areolatus group'. Zusammenfassung Die Anzahl der Arten im Phylum Tardigrada ist in den letzten 25 Jahren von 500 Arten auf inzwischen fast 1000 Arten angestiegen. Zurzeit besteht die Gruppe aus zwei Klassen (Heterotardigrada und Eutardigrada), vier Ordnungen, 21 Familien, und 104 Gattungen. Trotz der Häufigkeit der Tardigraden wurde ihnen seit ihrer Entdeckung im Jahr 1773 nur wenig Aufmerksamkeit geschenkt. Bis vor wenigen Jahren wurden ausschließlich morphologische Merkmale verwendet, um die Phylogenie der Tardigrada zu untersuchen. Dennoch sind die Verhältnisse zwischen und innerhalb vieler Arten noch nicht eindeutig geklärt. Das Ziel der vorliegenden Arbeit war es, die bereits bekannten, morphologischen Verhältnisse mit molekularen Ergebnissen zu belegen. Hierzu wurden nur vollständige Sequenzen der ribosomalen 18S rDNA von 19 Arten verwendet. Fünf neue Sequenzen wurden dabei hinzugefügt. Weiterhin wurden von 15 Arten neue mitochrondriale COI Sequenzen verwendet, die mit fünf bekannten COI Sequenzen zu insgesamt sieben Familien gehören. Der 18S rDNA-Baum wurde durch ME, maximum parsimony (MP) and ML Analysen berechnet. Die für COI kodierenden Sequenzen wurden in Aminosäuren übersetzt und der Baum mit NJ, MP and ML Analysen berechnet. Für beide Bäume (18 rDNA und COI) wurden die Wahrscheinlichkeiten durch MrBayes ermittelt. Dabei ergab sich, dass molekulare Daten mit den morphologischen Untersuchungen bei den Echiniscidae (Heterotardigrada) übereinstimmen. Bei Eutardigrada wurden die Ordnungen Apochela und Parachela als Schwestergruppen bestätigt. Ramazzottius (Hypsibiidae) gehört zu der Familie Macrobiotidae und weniger zu Hypsibiidae, zu der die Gattung gegenwärtig gestellt wird. Die molekularen und morphologischen Daten deuten darauf hin, dass es mindestens zwei großer Gruppen innerhalb von Macrobiotus gibt. Durch die 18 rDNA und COI mtDNA Sequenzen konnte eine neue phylogenetische Linie innerhalb von Macrobiotus, der ,richtersi-areolatus Gruppe' zugehörig, identifiziert werden. Weiterhin sind kryptische Arten innerhalb der Macrobiotus richtersi Gruppe' und innerhalb von Richtersius gefunden worden. Die vorliegende Arbeit verifiziert die in vorangegangene Untersuchungen erarbeitete Phylogenie von Tardigraden. Es konnten einige Entwicklungslinien innerhalb den Tardigraden bestätigt werden, andere deuten zukünftige, taxonomische Revisionen an. So wurde die neue Gattung Paramacrobiotus eingeführt, entsprechend der phylogenetischen Linie, die bisher durch die ,richtersi-areolatus Gruppe' vertreten war. [source]


    Identification of mosquito bloodmeals using mitochondrial cytochrome oxidase subunit I and cytochrome b gene sequences

    MEDICAL AND VETERINARY ENTOMOLOGY, Issue 4 2008
    J. S. TOWNZEN
    Abstract Primer pairs were designed and protocols developed to selectively amplify segments of vertebrate mitochondrial cytochrome oxidase subunit 1 (COI) and cytochrome b (Cyt b) mtDNA from the bloodmeals of mosquitoes (Diptera: Culicidae). The protocols use two pairs of nested COI primers and one pair of Cyt b primers to amplify short segments of DNA. Resultant sequences are then compared with sequences in GenBank, using the BLAST function, for putative host identification. Vertebrate DNA was amplified from 88% of our sample of 162 wild-caught, blood-fed mosquitoes from Oregon, U.S.A. and GenBank BLAST searches putatively identified 98% of the amplified sequences, including one amphibian, seven mammalian and 14 avian species. Criteria and caveats for putative identification of bloodmeals are discussed. [source]


    DNA barcodes show cryptic diversity and a potential physiological basis for host specificity among Diplostomoidea (Platyhelminthes: Digenea) parasitizing freshwater fishes in the St. Lawrence River, Canada

    MOLECULAR ECOLOGY, Issue 13 2010
    SEAN A. LOCKE
    Abstract Diplostomoid metacercariae parasitize freshwater fishes worldwide and cannot be identified to species based on morphology. In this study, sequences of the barcode region of cytochrome c oxidase subunit 1 (CO1) were used to discriminate species in 1088 diplostomoids, most of which were metacercariae from fish collected in the St. Lawrence River, Canada. Forty-seven diplostomoid species were detected, representing a large increase in known diversity. Most species suggested by CO1 sequences were supported by sequences of internal transcribed spacer (ITS) of rDNA and host and tissue specificity. Three lines of evidence indicate that physiological incompatibility between host and parasite is a more important determinant of host specificity than ecological separation of hosts and parasites in this important group of freshwater fish pathogens. First, nearly all diplostomoid species residing outside the lens of the eyes of fish are highly host specific, while all species that occur inside the lens are generalists. This can be plausibly explained by a physiological mechanism, namely the lack of an effective immune response in the lens. Second, the distribution of diplostomoid species among fish taxa reflected the phylogenetic relationships of host species rather than their ecological similarities. Third, the same patterns of host specificity were observed in separate, ecologically distinctive fish communities. [source]


    Phylogeography and speciation of colour morphs in the colonial ascidian Pseudodistoma crucigaster

    MOLECULAR ECOLOGY, Issue 10 2004
    I. TARJUELO
    Abstract Variation in pigmentation is common in marine invertebrates, although few studies have shown the existence of genetic differentiation of chromatic forms in these organisms. We studied the genetic structure of a colonial ascidian with populations of different colour morphs in the northwestern Mediterranean. A fragment of the c oxidase subunit 1 (COI) mitochondrial gene was sequenced in seven populations of Pseudodistoma crucigaster belonging to three different colour morphs (orange, yellow and grey). Maximum likelihood analyses showed two well-supported clades separating the orange morph from the yellow-grey morphotypes. Genetic divergence between these clades was 2.12%, and ,ST values between populations of the two clades were high (average 0.936), pointing to genetic isolation. Nested clade and coalescence analyses suggest that a past fragmentation event may explain the phylogeographical origin of these two clades. Non-neutral mtDNA evolution is observed in our data when comparing the two clades, showing a significant excess of nonsynonymous polymorphism within the yellow,grey morphotype using the McDonald,Kreitman test, which is interpreted as further support of reproductive isolation. We conclude that the two clades might represent separate species. We compare the population genetic differentiation found with that estimated for other colonial and solitary ascidian species, and relate it to larval dispersal capabilities and other life-history traits. [source]


    DNA BARCODING: Barcoding corals: limited by interspecific divergence, not intraspecific variation

    MOLECULAR ECOLOGY RESOURCES, Issue 2 2008
    T. L. SHEARER
    Abstract The expanding use of DNA barcoding as a tool to identify species and assess biodiversity has recently attracted much attention. An attractive aspect of a barcoding method to identify scleractinian species is that it can be utilized on any life stage (larva, juvenile or adult) and is not influenced by phenotypic plasticity unlike morphological methods of species identification. It has been unclear whether the standard DNA barcoding system, based on cytochrome c oxidase subunit 1 (COI), is suitable for species identification of scleractinian corals. Levels of intra- and interspecific genetic variation of the scleractinian COI gene were investigated to determine whether threshold values could be implemented to discriminate conspecifics from other taxa. Overlap between intraspecific variation and interspecific divergence due to low genetic divergence among species (0% in many cases), rather than high levels of intraspecific variation, resulted in the inability to establish appropriate threshold values specific for scleractinians; thus, it was impossible to discern most scleractinian species using this gene. [source]


    DNA barcoding of Neotropical bats: species identification and discovery within Guyana

    MOLECULAR ECOLOGY RESOURCES, Issue 2 2007
    ELIZABETH L. CLARE
    Abstract Sequence diversity in the cytochrome c oxidase subunit 1 gene has been shown to be an effective tool for species identification and discovery in various groups of animals, but has not been extensively tested in mammals. We address this gap by examining the performance of DNA barcodes in the discrimination of 87 species of bats from Guyana. Eighty-one of these species showed both low intraspecific variation (mean = 0.60%), and clear sequence divergence from their congeners (mean = 7.80%), while the other six showed deeply divergent intraspecific lineages suggesting that they represent species complexes. Although further work is needed to examine patterns of sequence diversity at a broader geographical scale, the present study validates the effectiveness of barcoding for the identification of regional bat assemblages, even highly diverse tropical faunas. [source]


    Identification of regulatory elements involved in expression and induction by sucrose and UV-B light of the Arabidopsis thaliana COX5b-2 gene, encoding an isoform of cytochrome c oxidase subunit 5b

    PHYSIOLOGIA PLANTARUM, Issue 3 2009
    Raúl N. Comelli
    The promoter sequences required for expression of the Arabidopsis thaliana COX5b-2 gene, encoding an isoform of cytochrome c oxidase subunit 5b, were analyzed using plants transformed with deleted and mutagenized forms of the promoter fused to gus. A 1000-bp promoter fragment produces expression in root and shoot meristems, leaf and cotyledon tips, and anthers. Deletion analysis indicated the presence of positive and negative regulatory elements. A regulatory element located between ,660 and ,620 from the translation start site was identified as a G-box by mutagenic analysis. Mutation of the G-box, that is present within the coding region of the preceding gene in the genome, increases expression of COX5b-2 in cotyledon and leaf lamina and abolishes induction by ultraviolet-B (UV-B) light, which presumably acts through the removal of an inhibitory factor. Identified positive regulatory elements include a site II element (TGGGCC), a related element with the sequence TGGGTC and four initiator elements (YTCANTYY) that completely abolish expression when mutated in combination. Site II elements are also involved in the response to sucrose. The results imply that the COX5b-2 gene has retained expression characteristics presented by most respiratory chain component genes, but its expression mechanisms have diverged from those employed by COX5b-1, the other gene encoding cytochrome c oxidase subunit 5b in Arabidopsis. [source]


    Molecular data reveals California as the potential source of an invasive leafhopper species, Macrosteles sp. nr. severini, transmitting the aster yellows phytoplasma in Hawaii

    ANNALS OF APPLIED BIOLOGY, Issue 3 2009
    J.J. Le Roux
    Abstract A species of aster leafhopper (Macrosteles sp.) became established in 2001 on Oahu, Hawaii, and through the transmission of the aster yellows phytoplasma, caused devastating losses to the island's watercress industry. DNA sequence data were analysed from two mitochondrial genes [cytochrome oxidase subunit 1(CO1) and nicotinamide adenine dinucleotide 1 (NADH1)] and one nuclear gene (wingless, Wg) (combined total of 1874 bp) to reconstruct phylogenetic relationships between putative US mainland source populations of aster leafhoppers and those introduced to Hawaii. These data were applied to elucidate the origin(s) and identity of Hawaiian infestations and the amount of genetic diversity within introduced invasive populations. Both phylogenetic search criteria (Bayesian and maximum likelihood models) converged onto similar tree topologies for all three gene regions and suggested that Hawaii infestations represent a single undescribed leafhopper species unrelated to the common aster leafhopper, Macrosteles quadrilineatus. An exact haplotype match was found from a specimen intercepted from watercress shipped to Hawaii from Los Angeles, California, suggesting this region as the potential source for Hawaiian infestations. Two mitochondrial haplotypes were identified in Hawaii suggesting two or perhaps just a single introduction of more than one female. [source]


    Formation of lipid raft redox signalling platforms in glomerular endothelial cells: an early event of homocysteine-induced glomerular injury

    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 9b 2009
    Fan Yi
    Abstract The present study tested the hypothesis that homocysteine (Hcys)-induced ceramide production stimulates lipid rafts (LRs) clustering on the membrane of glomerular endothelial cells (GECs) to form redox signalling platforms by aggregation and activation of NADPH oxidase subunits and thereby enhances superoxide (O2.,) production, leading to glomerular endothelial dysfunction and ultimate injury or sclerosis. Using confocal microscopy, we first demonstrated a co-localization of LR clusters with NADPH oxidase subunits, gp91phox and p47phox in the GECs membrane upon Hcys stimulation. Immunoblot analysis of floated detergent-resistant membrane fractions found that in LR fractions NADPH oxidase subunits gp91phox and p47phox are enriched and that the activity of this enzyme dramatically increased. We also examined the effect of elevated Hcys on the cell monolayer permeability in GECs. It was found that Hcys significantly increased GEC permeability, which was blocked by inhibition of LR redox signalling platform formation. Finally, we found that Hcys-induced enhancement of GEC permeability is associated with the regulation of microtubule stability through these LR-redox platforms. It is concluded that the early injurious effect of Hcys on the glomerular endothelium is associated with the formation of redox signalling platforms via LR clustering, which may lead to increases in glomerular permeability by disruption of microtubule network in GECs. [source]


    Analysis of mitochondrial DNA protein-coding region in the Yeso Sika deer (Cervus nippon yesoensis)

    ANIMAL SCIENCE JOURNAL, Issue 4 2004
    Kenta WADA
    ABSTRACT In the present study, mitochondrial DNA sequences of the Yeso Sika deer (Cervus nippon yesoensis) were studied. Specifically, protein-coding genes as mitochondrial NADH dehydrogenase subunits (ND1, ND2, ND3, ND4L, ND4, ND5 and ND6), cytochrome c oxidase subunits (CO I and CO III), ATP synthase subunits (ATPase8 and ATPase6) and cytochrome b. Also, phylogenetic analyses on eight mammalian species were performed, including the Muntjac deer (Muntiacus reevesi). The rate of amino-acid substitution was lowest (3.74%) between Yeso Sika deer and Muntjac deer, and the values between Yeso Sika deer and other species (sheep, cattle, horse, pig, mouse, human and chimpanzee) were 6.63%, 7.30%, 12.55%, 13.03%, 23.59%, 24.82% and 25.04%, respectively. Among them, the highest value of divergence was recognized in ATPase8, and the second structure of ATPase8 showed a difference between the Yeso Sika deer and Muntjac deer as a result of the substitution of 34His,Tyr and 49Thr,Ile. In addition, we identified a substitution of an amino-acid sequence (19Thr,Ala) between the Yeso Sika deer and Yakushima Sika deer (C. n. yakushimae). From these results, ATPase8 was also a variable region in Cervidae. [source]


    Additive beneficial effects of amlodipine and atorvastatin in reversing advanced cardiac hypertrophy in elderly spontaneously hypertensive rats

    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 11 2009
    Jing-Chao Lu
    Summary 1Additive beneficial effects on cardiovascular disease have been reported for amlodipine and atorvastatin. However, it is still unclear whether the combination of amlodipine and atorvastatin has additive beneficial effects on the regression of advanced cardiac hypertrophy in hypertension. In the present study, the effects of the drug combination on advanced cardiac hypertrophy were investigated in elderly spontaneously hypertensive rats (SHR). 2Elderly SHR (36 weeks old) were randomly allocated into four groups of 12: (i) a vehicle-treated control group; (ii) an amlodipine (10 mg/kg per day)-treated group; (iii) an atorvastatin (10 mg/kg per day)-treated group; and (iv) a group treated with a combination of amlodipine and atorvastatin (both at 10 mg/kg per day). Drugs were administered by oral gavage every morning for a period of 12 weeks before hearts were harvested for analysis. 3Combined administration of amlodipine and atorvastatin significantly suppressed cardiomyocyte hypertrophy, interstitial fibrosis and upregulation of hypertrophic and profibrotic genes, and also improved left ventricular diastolic dysfunction to a greater extent than did amlodipine monotherapy. Further beneficial effects of combination therapy on advanced cardiac hypertrophy were associated with a greater reduction of NADPH oxidase-mediated increases in cardiac reactive oxygen species (ROS), rather than decreased blood pressure and serum cholesterol levels. 4To elucidate the underlying molecular mechanisms, we examined cardiovascular NADPH oxidase subunits and found that amlodipine clearly attenuated the expression of p47phox and p40phox and slightly but significantly reduced p22phox and Rac-1 levels in heart tissue. Combination treatment with amlodipine plus atorvastatin led to a further reduction in p22phox, p47phox and Rac-1 protein levels compared with amlodipine alone. 5In conclusion, combined amlodipine and atorvastatin treatment has a greater beneficial effect on advanced cardiac hypertrophy compared with amlodipine monotherapy. The benefits are likely to be related to the additive effects of the drugs on the suppression of NADPH oxidase-mediated ROS generation. [source]