Home About us Contact | |||
Oocyte Activation (oocyte + activation)
Selected AbstractsRole of AMPK throughout meiotic maturation in the mouse oocyte: Evidence for promotion of polar body formation and suppression of premature activationMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 10 2010Stephen M. Downs Abstract This study was conducted to assess the role of AMPK in regulating meiosis in mouse oocytes from the germinal vesicle stage to metaphase II. Exposure of mouse cumulus cell-enclosed oocytes (CEO) and denuded oocytes (DO) during spontaneous maturation in vitro to AMPK-activating agents resulted in augmentation of the rate and frequency of polar body formation. Inhibitors of AMPK had an opposite, inhibitory effect. In addition, the AMPK inhibitor, compound C (Cmpd C) increased the frequency of oocyte activation. The stimulatory action of the AMPK-activating agent, AICAR, and the inhibitory action of Cmpd C were diminished if exposure was delayed, indicating an early action of AMPK on polar body formation. The frequency of spontaneous and Cmpd C-induced activation in CEO was reduced as the period of hormonal priming was increased, and AMPK stimulation eliminated the activation response. Immunostaining of oocytes with antibody to active AMPK revealed an association of active kinase with chromatin, spindle poles, and midbody during maturation. Immunolocalization of the ,1 catalytic subunit of AMPK showed an association with condensed chromatin and the meiotic spindle but not in the spindle poles or midbody; ,2 stained only diffusely throughout the oocyte. These data suggest that AMPK is involved in a regulatory capacity throughout maturation and helps promote the completion of meiosis while suppressing premature activation. Mol. Reprod. Dev. 77:888,899, 2010. © 2010 Wiley-Liss, Inc. [source] Changes in global histone acetylation pattern in somatic cell nuclei after their transfer into oocytes at different stages of maturationMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 3 2008Helena Fulka Abstract In our study, we have examined the pattern of global histone modification changes in somatic cell nuclei after their transfer into mouse oocytes at different stages of maturation or after their parthenogenetic activation. While germinal vesicle (GV) staged immature oocytes are strongly labeled with anti-acetylated histone H3 and H4 antibodies, the signal is absent in both metaphase I and metaphase II oocytes (MI, MII). In contrast, the oocytes of all maturation stages show a presence of trimethylated H3/K4 in their chromatin. When somatic cells were fused to intact or enucleated GV oocytes, both the GV and the somatic cell nucleus showed a very strong signal for all the antibodies used. On the other hand, when somatic cells nuclei that are AcH3 and AcH4 positive before fusion are introduced into either intact or enucleated MI or MII oocytes, their acetylation signal decreased rapidly and was totally absent after a prolonged culture. This was not the case when anti-trimethyl H3/K4 antibody was used. The somatic cell chromatin showed only a slight decrease in the intensity of labeling after its transfer into MI or MII oocytes. This decrease was, however, evident only after a prolonged culture. These results suggest not only a relatively higher stability of the methylation modification but also some difference between the oocyte and somatic chromatin. The ability to deacetylate the chromatin of transferred somatic nuclei disappears rapidly after the oocyte activation. Our results indicate that at least some reprogramming activity appears in the oocyte cytoplasm almost immediately after GV breakdown (GVBD), and that this activity rapidly disappears after the oocyte activation. Mol. Reprod. Dev. 75: 556,564, 2008. © 2007 Wiley-Liss, Inc. [source] Dynamics of lamin A/C in porcine embryos produced by nuclear transferMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 9 2007Kiho Lee Abstract This study was conducted to investigate the presence of lamin A/C in porcine nuclear transfer embryos and to determine whether lamin A/C can serve as a potential marker for nuclear reprogramming. First, lamin A/C was studied in oocytes and embryos produced by fertilization or parthenogenetic oocyte activation. We found that lamin A/C was present in the nuclear lamina of oocytes at the germinal vesicle stage while it was absent in mature oocytes. Lamin A/C was detected throughout preimplantation development in both in vivo-derived and parthenogenetic embryos. Incubation of the activated oocytes in the presence of ,-amanitin (an inhibitor of RNA polymerase II), or cycloheximide (a protein synthesis inhibitor) did not perturb lamin A/C assembly, indicating that the assembly resulted from solubilized lamins dispersed in the cytoplasm. In nuclear transfer embryos, the lamin A/C signal that had previously been identified in fibroblast nuclei disappeared soon after fusion. It became detectable again after the formation of the pronucleus-like structure, and all nuclear transfer embryos displayed lamin A/C staining during early development. Olfactory bulb progenitor cells lacked lamin A/C; however, when such cells were fused with enucleated oocytes, the newly formed nuclear envelopes stained positive for lamin A/C. These findings suggest that recipient oocytes remodel the donor nuclei using type A lamins dispersed in the ooplasm. The results also indicate that lamin A/C is present in the nuclear envelope of pig oocytes and early embryos and unlike in some other species, its presence after nuclear transfer is not an indicator of erroneous reprogramming. Mol. Reprod. Dev. 74: 1221,1227, 2007. © 2007 Wiley-Liss, Inc. [source] Fertilisation and pregnancy outcome after ICSI in globozoospermic patients without assisted oocyte activationANDROLOGIA, Issue 1 2009S. Bechoua Summary The successful outcome of intracytoplasmic sperm injection (ICSI) with globozoospermic sperm and non-activated oocytes is reported. Three couples underwent ICSI treatment and two of the patients were siblings. Forty-four non-activated oocytes were injected, 26 oocytes fertilised normally and 17 good quality embryos were obtained. Six embryo transfers were carried out, three with fresh embryos and three with frozen-thawed embryos. Three pregnancies resulted from the fresh embryo transfers and additionally two pregnancies were obtained after the transfer of frozen-thawed embryos. Two healthy babies were born. One twin pregnancy is ongoing. Our case reports demonstrate that in some ICSI attempts undertaken with globozoospermic sperm cells from two of our patients, high fertilisation rates, pregnancies and live births can be achieved, without artificially activated oocytes. Our data also suggest that in some cases, round-headed spermatozoa lack the capacity to activate the oocyte. Therefore, it cannot be excluded that artificial oocyte activation could be of help in globozoospermic patients with complete fertilisation failure. [source] Phosphorylation of inositol 1,4,5-triphosphate receptor 1 during in vitro maturation of porcine oocytesANIMAL SCIENCE JOURNAL, Issue 1 2010Junya ITO ABSTRACT During fertilization in mammalian species, a sperm-induced intracellular Ca2+ signal ([Ca2+]i) mediates both exit of meiosis and oocyte activation. Recently, we demonstrated in mouse oocytes that the phosphorylation levels of inositol 1,4,5 trisphosphate receptor type1 (IP3R1), the channel responsible for Ca2+ release and oscillations during fertilization, changed during maturation and fertilization. Therefore, we examined the expression and phosphorylation of IP3R1 during in vitro maturation of pig oocytes. Here, our present study shows that expression of IP3R1 protein did not change during maturation, although the phosphorylation status of the receptor, specifically at an MPM-2 epitope, did. We found that while at the beginning of maturation IP3R1 lacked MPM-2 immunoreactivity, it became MPM-2 reactive by 24 h and reached maximal reactivity by 36 h. Interestingly, the acquisition of MPM-2 reactivity coincided with the activation of p34cdc2 kinase and mitogen-activated protein kinase (MAPK), which are involved in meiotic progression. Following completion of maturation, inactivation of MAPK by U0126 did not affect IP3R1 phosphorylation, although inactivation of p34cdc2 kinase by roscovitine dramatically reduced IP3R1 phosphorylation. Neither inhibitor affected total expression of IP3R1. Altogether, our results show that IP3R1 undergoes dynamic phosphorylation during maturation and this might underlie the generation of oscillations at fertilization. [source] |