Home About us Contact | |||
Olfactory Pathway (olfactory + pathway)
Selected AbstractsAdult neurogenesis in the crayfish brain: Proliferation, migration, and possible origin of precursor cellsDEVELOPMENTAL NEUROBIOLOGY, Issue 7 2009Yi Zhang Abstract The birth of new neurons and their incorporation into functional circuits in the adult brain is a characteristic of many vertebrate and invertebrate organisms, including decapod crustaceans. Precursor cells maintaining life-long proliferation in the brains of crayfish (Procambarus clarkii, Cherax destructor) and clawed lobsters (Homarus americanus) reside within a specialized niche on the ventral surface of the brain; their daughters migrate to two proliferation zones along a stream formed by processes of the niche precursors. Here they divide again, finally producing interneurons in the olfactory pathway. The present studies in P. clarkii explore (1) differential proliferative activity among the niche precursor cells with growth and aging, (2) morphological characteristics of cells in the niche and migratory streams, and (3) aspects of the cell cycle in this lineage. Morphologically symmetrical divisions of neuronal precursor cells were observed in the niche near where the migratory streams emerge, as well as in the streams and proliferation zones. The nuclei of migrating cells elongate and undergo shape changes consistent with nucleokinetic movement. LIS1, a highly conserved dynein-binding protein, is expressed in cells in the migratory stream and neurogenic niche, implicating this protein in the translocation of crustacean brain neuronal precursor cells. Symmetrical divisions of the niche precursors and migration of both daughters raised the question of how the niche precursor pool is replenished. We present here preliminary evidence for an association between vascular cells and the niche precursors, which may relate to the life-long growth and maintenance of the crustacean neurogenic niche. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009 [source] Structural and functional changes in the olfactory pathway of adult Drosophila take place at a critical ageDEVELOPMENTAL NEUROBIOLOGY, Issue 1 2003Jean-Marc Devaud Abstract The olfactory system of several holometabolous insect species undergoes anatomical changes after eclosion of the imago, following those occurring during metamorphosis. In parallel, odor experience and learning performance also evolve with age. Here, we analyze the case of adult Drosophila females. Synaptogenesis in the antennal lobe (AL) starts in late pupa and continues during the first days of adult life, at the same time as the behavioral response to odors matures. Individual olfactory glomeruli (DM6, DM2, and V) display specific growth patterns between days 1 and 12 of adult life. Experience can modify the olfactory pathway both structurally and functionally as shown by adaptation experiments. The modifications associated with this form of nonassociative learning seem to take place at a critical age. Exposure to benzaldehyde at days 2,5 of adult life, but not at 8,11, causes behavioral adaptation as well as structural changes in DM2 and V glomeruli. Altered levels in intracellular cAMP, caused by dunce and rutabaga mutants, do not affect the normal changes in glomerular size, at least at day 6 of development, but they prevent those elicited by experience, establishing a molecular difference between glomerular changes of intrinsic versus environmental origin. Taken together, these data demonstrate an imprinting-like phenomenon in the olfactory pathway of young Drosophila adults, and illustrate its glomerulus-specific dynamics. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 13,23, 2003 [source] A diffusible signal attracts olfactory sensory axons toward their target in the developing brain of the mothDEVELOPMENTAL NEUROBIOLOGY, Issue 1 2003Lynne A. Oland Abstract The signals that olfactory receptor axons use to navigate to their target in the CNS are still not well understood. In the moth Manduca sexta, the primary olfactory pathway develops postembryonically, and the receptor axons navigate from an experimentally accessible sensory epithelium to the brain along a pathway long enough for detailed study of regions in which axon behavior changes. The current experiments ask whether diffusible factors contribute to receptor axon guidance. Explants were made from the antennal receptor epithelium and co-cultured in a collagen gel matrix with slices of various regions of the brain. Receptor axons were attracted toward the central regions of the brain, including the protocerebrum and antennal lobe. Receptor axons growing into a slice of the most proximal region of the antennal nerve, where axon sorting normally occurs, showed no directional preference. When the antennal lobe was included in the slice, the receptor axons entering the sorting region grew directly toward the antennal lobe. Taken together with the previous in vivo experiments, the current results suggest that an attractive diffusible factor can serve as one cue to direct misrouted olfactory receptor axons toward the medial regions of the brain, where local cues guide them to the antennal lobe. They also suggest that under normal circumstances, in which the receptor axons follow a pre-existing pupal nerve to the antennal lobe, the diffusible factor emanating from the lobe acts in parallel and at short range to maintain the fidelity of the path into the antennal lobe. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 24,40, 2003 [source] Neuronal differentiation and long-term survival of newly generated cells in the olfactory midbrain of the adult spiny lobster, Panulirus argusDEVELOPMENTAL NEUROBIOLOGY, Issue 3 2001Manfred Schmidt Abstract The fate of continuously generated cells in the soma clusters of the olfactory midbrain of adult spiny lobsters, Panulirus argus, was investigated by in vivo pulse-chase experiments with the proliferation marker 5-bromo-2,-deoxyuridine (BrdU) combined with immunostainings for neuropeptides of mature neurons. A BrdU injection after a survival time (ST) of 14 h labeled about 100 nuclei in the lateral soma clusters (LC), comprised of projection neurons, and about 30 nuclei in the medial soma clusters (MC), comprised of local interneurons. The BrdU-positive nuclei were confined to small regions at the inside of these clusters, which also contain nuclei in different phases of mitosis and thus represent proliferative zones. After STs of 2 weeks or 3 months, the number of BrdU-positive nuclei was doubled, indicating a mitosis of all originally labeled cells. Dependent on ST, the BrdU-positive nuclei were translocated from the proliferative zones towards the outside of the clusters, where somata of mature neurons reside. Immunostainings with antibodies to the neuropeptides FMRFamide and substance P, both of which label a large portion of somata in the MC and a pair of giant neurons projecting into the LC, revealed that in both clusters the proliferative zones are surrounded by, but are themselves devoid of, labeling. In the MC, some BrdU-positive somata were double-labeled by the FMRFamide antibody after an ST of 3 months, and by the substance P antibody after STs of 6 and 11/14 months, but not after 3 months. In the LC, BrdU-positive somata after an ST of 3 months partially and after 6 and 11/14 months widely overlapped with the arborizations of the giant neurons, indicating the establishment of synaptic input. The experiments show that cells generated in proliferative zones in the LC and MC of adult spiny lobsters after a final mitosis differentiate into neurons within months, survive for at least 1 year, and are integrated into the circuitry of the olfactory midbrain. A new hypothesis about the mechanism of adult neurogenesis in the central olfactory pathway of decapod crustaceans is developed, linking it to neurogenesis during embryonic and larval development. © 2001 John Wiley & Sons, Inc. J Neurobiol 48: 181,203, 2001 [source] Secreted TARSH regulates olfactory mitral cell dendritic complexityEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2009Ting-Wen Cheng Abstract Olfactory sensory neurons synapse with mitral cells to form stereotyped connections in the olfactory bulb (OB). Mitral cell apical dendrites receive input from olfactory sensory neurons expressing the same odorant receptor. During development, this restricted dendritic targeting of mitral cells is achieved through eliminating elaborated dendritic trees to a single apical dendrite. Through a genome-wide microarray screen, we identified TARSH (Target of NESH SH3) as a transiently expressed molecule in mitral cells during the dendritic refinement period. TARSH expression is restricted to pyramidal neurons along the main olfactory pathway, including the anterior olfactory nucleus and piriform cortex. The dynamic TARSH expression is not altered when odor-evoked activity is blocked by naris closure or in AC3 knockout mice. We also demonstrate that TARSH is a secreted protein. In dissociated OB cultures, secreted TARSH promotes the reduction of mitral cell dendritic complexity and restricts dendritic branching and outgrowth of interneurons. Dendritic morphological changes were also observed in mitral cells overexpressing TARSH themselves. We propose that TARSH is part of the genetic program that regulates mitral cell dendritic refinement. [source] Adult neurogenesis in the central olfactory pathway in the absence of receptor neuron turnover in Libinia emarginataEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2005Jeremy M. Sullivan Abstract Life-long neurogenesis is a characteristic feature of the olfactory pathways of a phylogenetically diverse array of animals. In both vertebrates and invertebrates, the life-long addition of olfactory interneurons in the brain occurs in parallel with the continuous proliferation of olfactory receptor neurons in the olfactory organ. It has been proposed that these two processes are related functionally, with new olfactory interneurons being added to accommodate the new olfactory receptor neurons added in the periphery. While this has not been tested directly because the two processes are not readily separable, this question can be addressed in the olfactory pathway of the crab, Libinia emarginata. Unlike most decapod crustaceans, which moult and grow throughout life, L. emarginata has a terminal, maturational moult after which animals become anecdysic (stop moulting). Because the addition of new receptor neurons in crustaceans is associated with moulting, a comparison of neurogenesis in immature and mature L. emarginata provides an opportunity to examine the interdependence of central and peripheral neurogenesis in the olfactory pathway. This study demonstrates that the continuous addition of olfactory receptor neurons in L. emarginata ceases at the terminal moult but that proliferation and differentiation of olfactory interneurons in the brain continues in mature animals. Contrary to the general assumption, therefore, continuous neurogenesis in the central olfactory pathway of this species does not occur as part of a process involving the coregulation of central and peripheral neurogenesis. These findings suggest that peripheral neurogenesis is not a requirement for continuous neurogenesis in the central olfactory pathway. [source] Subicular and CA1 hippocampal projections to the accessory olfactory bulbHIPPOCAMPUS, Issue 2 2009C. de la Rosa-Prieto Abstract The hippocampal formation is anatomically and functionally related to the olfactory structures especially in rodents. The entorhinal cortex (EC) receives afferent projections from the main olfactory bulb; this constitutes an olfactory pathway to the hippocampus. In addition to the olfactory system, most mammals possess an accessory olfactory (or vomeronasal) system. The relationships between the hippocampal formation and the vomeronasal system are virtually unexplored. Recently, a centrifugal projection from CA1 to the accessory olfactory bulb has been identified using anterograde tracers. In the study reported herein, experiments using anterograde tracers confirm this projection, and injections of retrograde tracers show the distribution and morphology of a population of CA1 and ventral subicular neurons projecting to the accessory olfactory bulb of rats. These results extend previous descriptions of hippocampal projections to the accessory olfactory bulb by including the ventral subiculum and characterizing the morphology, neurochemistry (double labeling with somatostatin), and distribution of such neurons. These data suggest feedback hippocampal control of chemosensory stimuli in the accessory olfactory bulb. Whether this projection processes spatial information on conspecifics or is involved in learning and memory processes associated with chemical stimuli remains to be elucidated. © 2008 Wiley-Liss, Inc. [source] Wnt/frizzled family members mediate olfactory sensory neuron axon extensionTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2008Diego J. Rodriguez-Gil Abstract A comprehensive model has yet to emerge, but it seems likely that numerous mechanisms contribute to the specificity of olfactory sensory neuron (OSN) axon innervation of the olfactory bulb. Elsewhere in the nervous system the Wnt/Fz family has been implicated in patterning of anterior-posterior axes, cell type specification, cell proliferation, and axon guidance. Because of our work describing cadherin-catenin family member expression in the primary olfactory pathway, and because mechanisms of Wnt-Fz interactions can depend in part on catenins, we were encouraged to explore Wnt-Fz expression and function in OSN axon extension. Here, we show that OSNs express Fz-1, Fz-3, and Wnt-5a, whereas olfactory ensheathing cells (OECs) express Wnt-4. Fz-7 is also expressed in the olfactory nerve by cells that delineate large axon fascicles, but are negative for OEC markers. Fz-1 showed a developmental downregulation. However, in adults it is expressed at different levels across the olfactory epithelium and in restricted glomeruli across the olfactory bulb, suggesting an important role in the formation and maintenance of OSN connections to the olfactory bulb. Reporter TOPGAL mice demonstrated that some OECs located in the inner olfactory nerve layer can respond to Wnt ligands. Of further interest, we show here with in vitro assays that Wnt-5a increases OSN axon outgrowth and alters growth cone morphology. Our data point to a key role for Wnt/Fz molecules in the development of the mouse olfactory system, providing complementary mechanisms required for OSN axon extension and coalescence. J. Comp. Neurol. 511:301,317, 2008. © 2008 Wiley-Liss, Inc. [source] Three-dimensional average-shape atlas of the honeybee brain and its applicationsTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2005Robert Brandt Abstract The anatomical substrates of neural nets are usually composed from reconstructions of neurons that were stained in different preparations. Realistic models of the structural relationships between neurons require a common framework. Here we present 3-D reconstructions of single projection neurons (PN) connecting the antennal lobe (AL) with the mushroom body (MB) and lateral horn, groups of intrinsic mushroom body neurons (type 5 Kenyon cells), and a single mushroom body extrinsic neuron (PE1), aiming to compose components of the olfactory pathway in the honeybee. To do so, we constructed a digital standard atlas of the bee brain. The standard atlas was created as an average-shape atlas of 22 neuropils, calculated from 20 individual immunostained whole-mount bee brains. After correction for global size and positioning differences by repeatedly applying an intensity-based nonrigid registration algorithm, a sequence of average label images was created. The results were qualitatively evaluated by generating average gray-value images corresponding to the average label images and judging the level of detail within the labeled regions. We found that the first affine registration step in the sequence results in a blurred image because of considerable local shape differences. However, already the first nonrigid iteration in the sequence corrected for most of the shape differences among individuals, resulting in images rich in internal detail. A second iteration improved on that somewhat and was selected as the standard. Registering neurons from different preparations into the standard atlas reveals 1) that the m-ACT neuron occupies the entire glomerulus (cortex and core) and overlaps with a local interneuron in the cortical layer; 2) that, in the MB calyces and the lateral horn of the protocerebral lobe, the axon terminals of two identified m-ACT neurons arborize in separate but close areas of the neuropil; and 3) that MB-intrinsic clawed Kenyon cells (type 5), with somata outside the calycal cups, project to the peduncle and lobe output system of the MB and contact (proximate) the dendritic tree of the PE1 neuron at the base of the vertical lobe. Thus the standard atlas and the procedures applied for registration serve the function of creating realistic neuroanatomical models of parts of a neural net. The Honeybee Standard Brain is accessible at www.neurobiologie.fu-berlin.de/beebrain. J. Comp. Neurol. 492:1,19, 2005. © 2005 Wiley-Liss, Inc. [source] Laminar organization of the developing lateral olfactory tract revealed by differential expression of cell recognition moleculesTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2004Koichiro Inaki Abstract The projection neurons in the olfactory bulb (mitral and tufted cells) send axons through the lateral olfactory tract (LOT) onto several structures of the olfactory cortex. However, little is known of the molecular and cellular mechanisms underlying establishment of functional connectivity from the bulb to the cortex. Here, we investigated the developmental process of LOT formation by observing expression patterns of cell recognition molecules in embryonic mice. We immunohistochemically identified a dozen molecules expressed in the developing LOT and some of them were localized to subsets of mitral cell axons. Combinatorial immunostaining for these molecules revealed that the developing LOT consists of three laminas: superficial, middle, and deep. Detailed immunohistochemical, in situ hybridization, and 5-bromodeoxyuridine labeling analyses suggested that the laminar organization reflects: 1) the segregated pathways from the accessory and main olfactory bulbs, and 2) the different maturity of mitral cell axons. Mitral cell axons of the accessory olfactory bulb were localized to the deep lamina, segregated from those of the main olfactory bulb. In the main olfactory pathway, axons of mature mitral cells, whose somata is located in the apical sublayer of the mitral cell layer, were localized to the middle lamina within LOT, while those of immature mitral cells that located in the basal sublayer were complementarily localized to the superficial lamina. These results suggest that newly generated immature axons are added to the most superficial lamina of LOT successively, leading to the formation of piled laminas with different maturational stages of the mitral cell axons. J. Comp. Neurol. 479:243,256, 2004. © 2004 Wiley-Liss, Inc. [source] Adult neurogenesis in the central olfactory pathway in the absence of receptor neuron turnover in Libinia emarginataEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2005Jeremy M. Sullivan Abstract Life-long neurogenesis is a characteristic feature of the olfactory pathways of a phylogenetically diverse array of animals. In both vertebrates and invertebrates, the life-long addition of olfactory interneurons in the brain occurs in parallel with the continuous proliferation of olfactory receptor neurons in the olfactory organ. It has been proposed that these two processes are related functionally, with new olfactory interneurons being added to accommodate the new olfactory receptor neurons added in the periphery. While this has not been tested directly because the two processes are not readily separable, this question can be addressed in the olfactory pathway of the crab, Libinia emarginata. Unlike most decapod crustaceans, which moult and grow throughout life, L. emarginata has a terminal, maturational moult after which animals become anecdysic (stop moulting). Because the addition of new receptor neurons in crustaceans is associated with moulting, a comparison of neurogenesis in immature and mature L. emarginata provides an opportunity to examine the interdependence of central and peripheral neurogenesis in the olfactory pathway. This study demonstrates that the continuous addition of olfactory receptor neurons in L. emarginata ceases at the terminal moult but that proliferation and differentiation of olfactory interneurons in the brain continues in mature animals. Contrary to the general assumption, therefore, continuous neurogenesis in the central olfactory pathway of this species does not occur as part of a process involving the coregulation of central and peripheral neurogenesis. These findings suggest that peripheral neurogenesis is not a requirement for continuous neurogenesis in the central olfactory pathway. [source] |