O/w Emulsion (o + emulsion)

Distribution by Scientific Domains


Selected Abstracts


Development of New Microencapsulation Techniques Useful for the Preparation of PLGA Microspheres

MACROMOLECULAR RAPID COMMUNICATIONS, Issue 21 2006
Hongkee Sah
Abstract Summary: Intensive efforts were made to develop an efficient, novel microencapsulation system useful to encapsulate a model drug, risperidone, to PLGA microspheres. Methyl dichloroacetate was used as a dispersed solvent for the first time, since it possessed excellent solvency power on PLGA and readily underwent ammonolysis. A dispersed phase composed of methyl dichloroacetate, risperidone, and PLGA was emulsified in an aqueous phase to form an O/W emulsion. Adding ammonia solution into the emulsion rapidly converted methyl dichloroacetate into water-soluble dichloroacetamide and methanol. As a result, emulsion droplets were immediately transformed into hardened microspheres. The new microencapsulation system allowed us to make PLGA microspheres with a drug payload of >40 wt.-% and attain almost complete encapsulation efficiencies. In summary, preparing an O/W emulsion and subjecting the emulsion to ammonolysis led to development of an efficient, novel microencapsulation system. It was anticipated that the new system could make it possible to load other bioactive materials into microspheres made of various types of hydrophobic polymers. SEM micrographs of the external and internal morphology of PLGA/risperidone microspheres. [source]


Skin moisturization by hydrogenated polyisobutene,Quantitative and visual evaluation

INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 1 2010
N. Dayan
J. Cosmet. Sci., 60, 15,24 (January/February 2009) Synopsis Hydrogenated polyisobutene (HP) is used in topically applied cosmetic/personal care formulations as an emollient that leaves a pleasing skin feel when applied, and rubbed in after application. This effect, although distinguishable to the user, is difficult to define and quantify. Recognizing that some of the physical properties of HP such as film formation and wear resistance may contribute, in certain mechanisms, to skin moisturization, we designed a short-term pilot study to follow changes in skin moisturization. HP's incorporation into an o/w emulsion at 8% yielded increased viscosity and reduced emulsion droplet size as compared to the emollient ester CCT (capric/caprylic triglyceride) or a control formulation. Quantitative data indicate that application of the o/w emulsion formulation containing either HP or CCT significantly elevated skin moisture content and thus reduced transepidermal water loss (TEWL) by a maximal ,33% against the control formulation within 3 h and maintained this up to 6 h. Visual observation of skin treated with the HP-containing formulation showed fine texture and clear contrast as compared to the control or the CCT formulation, confirming this effect. As a result of increased hydration, skin conductivity, as measured in terms of corneometer values, was also elevated significantly by about tenfold as early as 20 min after HP or CCT application and was maintained throughout the test period. Throughout the test period the HP formulation was 5,10% more effective than the CCT formulation both in reduction of TEWL as well as in increased skin conductivity. Thus, compared to the emollient ester (CCT), HP showed a unique capability for long-lasting effect in retaining moisture and improving skin texture. [source]


Hydrogenated castor oil nanoparticles as carriers for the subcutaneous administration of tilmicosin: in vitro and in vivo studies

JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 2 2009
C. HAN
Tilmicosin-loaded solid lipid nanoparticles (SLN) were prepared with hydrogenated castor oil (HCO) by o/w emulsion,solvent evaporation technique. The nanoparticle diameters, surface charges, drug loadings and encapsulation efficiencies of different formulations were 90,230 nm, ,6.5,,12.5 mV, 40.3,59.2% and 5.7,11.7% (w/w), respectively. In vitro release studies of the tilmicosin-loaded nanoparticles showed a sustained release and the released tilmicosin had the same antibacterial activity as that of the free drug. Pharmacokinetics study after subcutaneous administration to Balb/c mice demonstrated that a single dose of tilmicosin-loaded nanoparticles resulted in sustained serum drug levels (>0.1 ,g/mL) for 8 days, as compared with only 5 h for the same amount of tilmicosin phosphate solution. The time to maximum concentration (Tmax), half-life of absorption (T½ ab) and half-life of elimination (T½ el) of tilmicosin-loaded nanoparticles were much longer than those of tilmicosin phosphate solution. Tissue section showed that drug-loaded nanoparticles caused no inflammation at the injection site. Cytotoxicity study in cell culture and acute toxicity test in mice demonstrated that the nanoparticles had little or no toxicity. The results of this exploratory study suggest that the HCO,SLN could be a useful system for the delivery of tilmicosin by subcutaneous administration. [source]


Enhancement of oil droplet removal from o/w emulsion by adding methylated milk casein in flotation technique

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 2 2009
Hideo Maruyama
Abstract To clarify oil-in-water (o/w) emulsion, flotation experiments were conducted by adding methylated milk casein (MeCS), which is a biodegradable flocculant. Emulsion used in this study was prepared by ultrasonic emulsification of heavy oil (bunker-A) and sodium dodecyl sulfate (SDS) solution. It was found that addition of MeCS enhanced clarification of oil droplets from o/w emulsion solution due to floc formation by adding MeCS. An optimum dosage of MeCS to form effective floc was determined by the relative turbidity in a clarification experiment. In flotation experiments, clarification ability was evaluated by removal rate constant, k, obtained by fitting of turbidity data to a pseudo-first-order kinetic equation. In case of varying dosage of MeCS and keeping superficial gas velocity, Ug, at constant value (5.48 × 10,2 cm/s), removal rate was greatly influenced by amount of MeCS dosage. The maximum value of k was also obtained at the most optimum dosage of MeCS, and k decreased with adding lesser or larger amount of MeCS than the optimum dosage. On the other hand, in case of keeping the dosage of MeCS at the optimum dosage, and varying superficial gas velocity, up to Ug < ca. 0.2 cm/s, k was increased with increasing superficial gas velocity, and increase in removal rate of oil droplets was mostly proportional with increase in bubble surface area production rate. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


Effect of oil content and processing conditions on the thermal behaviour and physicochemical stability of oil-in-water emulsions

INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 1 2009
Megan Tippetts
Summary The destabilisation mechanism of oil-in-water (o/w) emulsions was studied as a function of oil content (20% and 40% o/w), homogenisation conditions and crystallisation temperatures (10, 5, 0, ,5 and ,10 °C). A mixture of anhydrous milk fat and soya bean oil was used as the lipid phase and whey protein isolate (2 wt%) as emulsifier. Crystallisation and melting behaviours were analysed using differential scanning calorimetry. Physicochemical stability was measured with a vertical scan macroscopic analyser. Emulsions with 20% oil were found to be less stable than those with 40% oil. For 20% o/w emulsions, the crystallisation was delayed and inhibited in emulsions with smaller droplets and promoted in emulsions with larger droplets when compared with 40% o/w emulsions. Depending on the droplet sizes in the emulsion, the formation of lipid crystals (in combination with the emulsifier) either stabilises (small droplets) or destabilises (big droplets) the emulsion. [source]


Incorporation of ceramide 3B in dermatocosmetic emulsions: effect on the transepidermal water loss of sodium lauryl sulphate-damaged skin

JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY & VENEREOLOGY, Issue 4 2000
Kristien De Paepe
Abstract Background In previous work we reported on the efficacy of cosmetic body lotions enriched with skin-identical lipids to reduce the transepidermal water loss (TEWL) of ageing and sodium lauryl sulphate (SLS)-damaged skin. The observations made depended on the experimental design and clearly raised the question of the importance of the galenic formulation of skin ceramide-containing products. Objectives The aim of the present work was to study the different galenic forms in which ceramide 3B (0.2% w/v) can be incorporated into common o/w emulsions. In addition, we investigated whether supplementation of skin care products with ceramide 3B enriched with penetration enhancers and coemulsifiers could exert a beneficial effect on barrier function, done by measuring their effects on the TEWL of SLS-induced scaly skin. Results We found that the technique of incorporating ceramide 3B into the o/w emulsions was important for their final stability. However, no additional positive effect on the TEWL values of SLS-damaged skin could be observed when the efficacy of the ceramide-containing emulsions was compared with that of proper controls. Conclusions Although suitable galenic formulas were developed, no positive effect on TEWL could be observed when ceramide 3B was added in a final concentration of 0.2% (w/v) to different o/w emulsions and applied to SLS-damaged skin. [source]


Cell-free Protein Synthesis through Solubilisate Exchange in Water/Oil Emulsion Compartments

CHEMBIOCHEM, Issue 8 2004
Adriana V. Pietrini Dr.
Abstract This work is aimed at finding conditions under which synthetic compartments used as cell models can fuse with each other and allow reagents contained in the different compartments to react. This goal seems to be best achieved by the use of water in oil emulsions (w/o) with dimensions in the range of 30,60 ,m. In particular, cell-free EGFP (enhanced green fluorescent protein) synthesis takes place in Tween 80/Span 80 w/o emulsions, and the extent of the reaction can be monitored directly by fluorescence. The medium is mineral oil, containing 0.5,% v/v aqueous solution. Different premixing configurations of the components (plasmid, amino acids, E. Coli extract) are used and compared. The in vitro synthesis of EGFP in emulsion droplets proceeds for 1 h, and the yield is 7.5 ng,,L,1protein. EGFP synthesis in aqueous solution takes place for at least 5 h. The yield is 10.5 ng,,L,1protein after 1 h and 15.8 ng,,L,1protein after 5 h.The results with the w/o emulsions show that solubilisate exchange takes place among the different water droplets, but it is not possible to demonstrate clearly that a true fusion takes place. [source]


Production of Emulsions in High-Pressure Homogenizers , Part I: Disruption and Stabilization of Droplets

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 5 2003
S. Tesch
In continuous mechanical emulsification, disruption and stabilization of droplets determine the resulting droplet size and, thus, the emulsion's microstructure. Without the need of adding any stabilizer, w/o emulsions provide the possibility of a high viscosity of the continuous phase and, in consequence, of decreasing the probability of coalescence. The present work presents investigations on the production of w/o emulsions in high-pressure homogenizers: the different geometries of standard valve, microfluidizer and orifice valve are compared to each other with reference to disruption and stabilization of droplets. [source]