O3 Sensitivity (o3 + sensitivity)

Distribution by Scientific Domains


Selected Abstracts


The Ozone Component of Global Change: Potential Effects on Agricultural and Horticultural Plant Yield, Product Quality and Interactions with Invasive Species

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 4 2009
Fitzgerald Booker
The productivity, product quality and competitive ability of important agricultural and horticultural plants in many regions of the world may be adversely affected by current and anticipated concentrations of ground-level ozone (O3). Exposure to elevated O3 typically results in suppressed photosynthesis, accelerated senescence, decreased growth and lower yields. Various approaches used to evaluate O3 effects generally concur that current yield losses range from 5% to 15% among sensitive plants. There is, however, considerable genetic variability in plant responses to O3. To illustrate this, we show that ambient O3 concentrations in the eastern United States cause substantially different levels of damage to otherwise similar snap bean cultivars. Largely undesirable effects of O3 can also occur in seed and fruit chemistry as well as in forage nutritive value, with consequences for animal production. Ozone may alter herbicide efficacy and foster establishment of some invasive species. We conclude that current and projected levels of O3 in many regions worldwide are toxic to sensitive plants of agricultural and horticultural significance. Plant breeding that incorporates O3 sensitivity into selection strategies will be increasingly necessary to achieve sustainable production with changing atmospheric composition, while reductions in O3 precursor emissions will likely benefit world food production and reduce atmospheric concentrations of an important greenhouse gas. [source]


Differential gene expression in senescing leaves of two silver birch genotypes in response to elevated CO2 and tropospheric ozone

PLANT CELL & ENVIRONMENT, Issue 6 2010
SARI KONTUNEN-SOPPELA
ABSTRACT Long-term effects of elevated CO2 and O3 concentrations on gene expression in silver birch (Betula pendula Roth) leaves were studied during the end of the growing season. Two birch genotypes, clones 4 and 80, with different ozone growth responses, were exposed to 2× ambient CO2 and/or O3 in open-top chambers (OTCs). Microarray analyses were performed after 2 years of exposure, and the transcriptional profiles were compared to key physiological characteristics during leaf senescence. There were genotypic differences in the responses to CO2 and O3. Clone 80 exhibited greater transcriptional response and capacity to alter metabolism, resulting in better stress tolerance. The gene expression patterns of birch leaves indicated contrasting responses of senescence-related genes to elevated CO2 and O3. Elevated CO2 delayed leaf senescence and reduced associated transcriptional changes, whereas elevated O3 advanced leaf senescence because of increased oxidative stress. The combined treatment demonstrated that elevated CO2 only temporarily alleviated the negative effects of O3. Gene expression data alone were insufficient to explain the O3 response in birch, and additional physiological and biochemical data were required to understand the true O3 sensitivity of these clones. [source]


No interaction between methyl jasmonate and ozone in Pima cotton: growth and allocation respond independently to both

PLANT CELL & ENVIRONMENT, Issue 5 2010
D. A. GRANTZ
ABSTRACT Ozone (O3) is damaging to plants, inducing signalling pathways involving antagonism between jasmonates and ethylene. These pathways mediate O3 responses, particularly to acute exposure, and their manipulation protected several species against acute and chronic O3. We use chronic daily exposure of up to 163 ppb O3, and twice weekly application of up to 320 µg plant,1 methyl jasmonate (MeJA) to test two hypothesizes: 1) a low rate of MeJA does not affect growth but increases O3 sensitivity; 2) a high rate inhibits growth but reduces O3 sensitivity. Both hypotheses were rejected. Growth declined with increases in both MeJA and O3. MeJA at 40 µg plant,1 caused no direct effect, and at 160 µg plant,1 reduced growth similarly at all O3. Neither rate altered O3 sensitivity. These additive responses are not consistent with protection by MeJA in this system. They may reflect inter-specific differences in signalling, since O3 concentrations used here exceeded some reported acute exposures. Alternatively, parallel responses to O3 and MeJA may suggest that O3 -induced jasmonates play a developmental role in chronic response but no protective role in the absence of lesions characteristic of acute exposure. MeJA appears useful as a probe of these mechanisms. [source]