Numerical Test Case (numerical + test_case)

Distribution by Scientific Domains

Selected Abstracts

Interface handling for three-dimensional higher-order XFEM-computations in fluid,structure interaction

Ursula M. Mayer
Abstract Three-dimensional higher-order eXtended finite element method (XFEM)-computations still pose challenging computational geometry problems especially for moving interfaces. This paper provides a method for the localization of a higher-order interface finite element (FE) mesh in an underlying three-dimensional higher-order FE mesh. Additionally, it demonstrates, how a subtetrahedralization of an intersected element can be obtained, which preserves the possibly curved interface and allows therefore exact numerical integration. The proposed interface algorithm collects initially a set of possibly intersecting elements by comparing their ,eXtended axis-aligned bounding boxes'. The intersection method is applied to a highly reduced number of intersection candidates. The resulting linearized interface is used as input for an elementwise constrained Delaunay tetrahedralization, which computes an appropriate subdivision for each intersected element. The curved interface is recovered from the linearized interface in the last step. The output comprises triangular integration cells representing the interface and tetrahedral integration cells for each intersected element. Application of the interface algorithm currently concentrates on fluid,structure interaction problems on low-order and higher-order FE meshes, which may be composed of any arbitrary element types such as hexahedra, tetrahedra, wedges, etc. Nevertheless, other XFEM-problems with explicitly given interfaces or discontinuities may be tackled in addition. Multiple structures and interfaces per intersected element can be handled without any additional difficulties. Several parallelization strategies exist depending on the desired domain decomposition approach. Numerical test cases including various geometrical exceptions demonstrate the accuracy, robustness and efficiency of the interface handling. Copyright 2009 John Wiley & Sons, Ltd. [source]

On the stability and convergence of a Galerkin reduced order model (ROM) of compressible flow with solid wall and far-field boundary treatment,

I. Kalashnikova
Abstract A reduced order model (ROM) based on the proper orthogonal decomposition (POD)/Galerkin projection method is proposed as an alternative discretization of the linearized compressible Euler equations. It is shown that the numerical stability of the ROM is intimately tied to the choice of inner product used to define the Galerkin projection. For the linearized compressible Euler equations, a symmetry transformation motivates the construction of a weighted L2 inner product that guarantees certain stability bounds satisfied by the ROM. Sufficient conditions for well-posedness and stability of the present Galerkin projection method applied to a general linear hyperbolic initial boundary value problem (IBVP) are stated and proven. Well-posed and stable far-field and solid wall boundary conditions are formulated for the linearized compressible Euler ROM using these more general results. A convergence analysis employing a stable penalty-like formulation of the boundary conditions reveals that the ROM solution converges to the exact solution with refinement of both the numerical solution used to generate the ROM and of the POD basis. An a priori error estimate for the computed ROM solution is derived, and examined using a numerical test case. Published in 2010 by John Wiley & Sons, Ltd. [source]

Shoreline tracking and implicit source terms for a well balanced inundation model

Giovanni FranchelloArticle first published online: 31 JUL 200
Abstract The HyFlux2 model has been developed to simulate severe inundation scenario due to dam break, flash flood and tsunami-wave run-up. The model solves the conservative form of the two-dimensional shallow water equations using the finite volume method. The interface flux is computed by a Flux Vector Splitting method for shallow water equations based on a Godunov-type approach. A second-order scheme is applied to the water surface level and velocity, providing results with high accuracy and assuring the balance between fluxes and sources also for complex bathymetry and topography. Physical models are included to deal with bottom steps and shorelines. The second-order scheme together with the shoreline-tracking method and the implicit source term treatment makes the model well balanced in respect to mass and momentum conservation laws, providing reliable and robust results. The developed model is validated in this paper with a 2D numerical test case and with the Okushiri tsunami run up problem. It is shown that the HyFlux2 model is able to model inundation problems, with a satisfactory prediction of the major flow characteristics such as water depth, water velocity, flood extent, and flood-wave arrival time. The results provided by the model are of great importance for the risk assessment and management. Copyright 2009 John Wiley & Sons, Ltd. [source]

Unstructured finite volume discretization of two-dimensional depth-averaged shallow water equations with porosity

L. Cea
Abstract This paper deals with the numerical discretization of two-dimensional depth-averaged models with porosity. The equations solved by these models are similar to the classic shallow water equations, but include additional terms to account for the effect of small-scale impervious obstructions which are not resolved by the numerical mesh because their size is smaller or similar to the average mesh size. These small-scale obstructions diminish the available storage volume on a given region, reduce the effective cross section for the water to flow, and increase the head losses due to additional drag forces and turbulence. In shallow water models with porosity these effects are modelled introducing an effective porosity parameter in the mass and momentum conservation equations, and including an additional drag source term in the momentum equations. This paper presents and compares two different numerical discretizations for the two-dimensional shallow water equations with porosity, both of them are high-order schemes. The numerical schemes proposed are well-balanced, in the sense that they preserve naturally the exact hydrostatic solution without the need of high-order corrections in the source terms. At the same time they are able to deal accurately with regions of zero porosity, where the water cannot flow. Several numerical test cases are used in order to verify the properties of the discretization schemes proposed. Copyright 2009 John Wiley & Sons, Ltd. [source]