Null Mutation (null + mutation)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


Aged Mice Require Full Transcription Factor, Runx2/Cbfa1, Gene Dosage for Cancellous Bone Regeneration After Bone Marrow Ablation,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2004
Kunikazu Tsuji
Abstract Runx2 is prerequisite for the osteoblastic differentiation in vivo. To elucidate Runx2 gene functions in adult bone metabolism, we conducted bone marrow ablation in Runx2 heterozygous knockout mice and found that aged (but not young) adult Runx2 heterozygous knockout mice have reduced new bone formation capacity after bone marrow ablation. We also found that bone marrow cells from aged Runx2 heterozygous knockout mice have reduced ALP+ colony-forming potential in vitro. This indicates that full Runx2 dosage is needed for the maintenance of osteoblastic activity in adult mice. Introduction: Null mutation of the Runx2 gene results in total loss of osteoblast differentiation, and heterozygous Runx2 deficiency causes cleidocranial dysplasia in humans and mice. However, Runx2 gene functions in adult bone metabolism are not known. We therefore examined the effects of Runx2 gene function in adult mice with heterozygous loss of the Runx2 gene. Materials and Methods: Bone marrow ablation was conducted in young adult (2.5 ± 0.5 months old) or aged adult (7.5 ± 0.5 months old) Runx2 heterozygous knockout mice and wildtype (WT) littermates. Cancellous bone regeneration was evaluated by 2D ,CT. Results: Although new bone formation was observed after bone marrow ablation in the operated bone marrow cavity of WT mice, such bone formation was significantly reduced in Runx2 heterozygous knockout mice. Interestingly, this effect was observed specifically in aged but not young adult mice. Runx2 heterozygous deficiency in aged mice significantly reduced the number of alkaline phosphatase (ALP)+ cell colonies in the bone marrow cell cultures, indicating a reduction in the numbers of osteoprogenitor cells. Such effects of heterozygous Runx2 deficiency on osteoblasts in vitro was specific to the cells from aged adult mice, and it was not observed in the cultures of marrow cells from young adult mice. Conclusion: These results indicate that full gene dosage of Runx2 is required for cancellous bone formation after bone marrow ablation in adult mice. [source]


slowmo is required for Drosophila germline proliferation

GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 2 2007
Simon Reeve
Abstract Null mutations in the Drosophila gene, slowmo (slmo), result in reduced mobility and lethality in first-instar larvae. Slowmo encodes a mitochondrial protein of unknown function, as do the two other homologs found in Drosophila. Here, we have studied a hypomorphic P-element allele of slmo demonstrating its effects on germline divisions in both testes and ovaries. Using in situ studies, enhancer-trap activity, and promoter fusions, we have shown that slmo expression in testes is found in the somatic cyst cells (SCC). The hypomorphic allele for Slmo revealed apoptotic loss of germline cells in the larval germline, culminating in a complete absence of the germline in adult flies. In females, a similar degeneration of the germarium is observed, while reporter gene expression is found in both germline and somatic cells. Using a null mutation in female germline clones, we find slmo is dispensable from the germline cells. Our results suggest that Slowmo is not required in germline cells directly, but is required in SCCs responsible for maintaining germline survival in both sexes. genesis 45:66,75, 2007. © 2007 Wiley-Liss, Inc. [source]


Complementation of Physiological and Behavioral Defects by a Slowpoke Ca2+ -Activated K+ Channel Transgene

JOURNAL OF NEUROCHEMISTRY, Issue 3 2000
Robert Brenner
Abstract: The Drosophila slowpoke gene encodes a large conductance calcium-activated potassium channel used in neurons, muscle, and some epithelial cells. Tissue-specific transcriptional promoters and alternative mRNA splicing generate a large array of transcripts. These distinct transcripts are thought to tailor the properties of the channel to the requirements of the cell. Presumably, a single splice variant cannot satisfy the specific needs of all cell types. To test this, we examined whether a single slowpoke splice variant was capable of complementing all slowpoke behavioral phenotypes. Null mutations in slowpoke cause animals to be semiflightless and to manifest an inducible "sticky-feet" phenotype. The well-characterized slowpoke transcriptional control region was used to direct the expression of a single slowpoke splice variant (cDNA H13) in transgenic flies. The endogenous gene in these flies had been inactivated by the slo4 mutation. Action-potential recordings and voltage-clamp recordings demonstrated the production of functional channels from the transgene. The transgene completely complemented the flight defect, but not the sticky-feet phenotype. We conclude that distinct slowpoke channel isoforms, produced by alternative splicing, are not interchangeable and are required for proper function of different cell types. [source]


Development and neuronal dependence of cutaneous sensory nerve formations: Lessons from neurotrophins,

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 5 2010
Juan A. Montaño
Abstract Null mutations of genes from the NGF family of NTs and their receptors (NTRs) lead to loss/reduction of specific neurons in sensory ganglia; conversely, cutaneous overexpression of NTs results in skin hyperinnervation and increase or no changes in the number of sensory neurons innervating the skin. These neuronal changes are paralleled with loss of specific types of sensory nerve formations in the skin. Therefore, mice carrying mutations in NT or NTR genes represent an ideal model to identify the neuronal dependence of each type of cutaneous sensory nerve ending from a concrete subtype of sensory neuron, since the development, maintenance, and structural integrity of sensory nerve formations depend upon sensory neurons. Results obtained from these mouse strains suggest that TrkA positive neurons are connected to intraepithelial nerve fibers and other sensory nerve formations depending from C and A, nerve fibers; the neurons expressing TrkB and responding to BDNF and NT-4 innervate Meissner corpuscles, a subpopulation of Merkell cells, some mechanoreceptors of the piloneural complex, and the Ruffini's corpuscles; finally, a subpopulation of neurons, which are responsive to NT-3, support postnatal survival of some intraepithelial nerve fibers and Merkel cells in addition to the muscle mechanoreceptors. On the other hand, changes in NTs and NTRs affect the structure of non-nervous structures of the skin and are at the basis of several cutaneous pathologies. This review is an update about the role of NTs and NTRs in the maintenance of normal cutaneous innervation and maintenance of skin integrity. Microsc. Res. Tech. 2010. © 2009 Wiley-Liss, Inc. [source]


Developmental and degenerative features in a complicated spastic paraplegia

ANNALS OF NEUROLOGY, Issue 4 2010
M. Chiara Manzini PhD
Objective We sought to explore the genetic and molecular causes of Troyer syndrome, one of several complicated hereditary spastic paraplegias (HSPs). Troyer syndrome had been thought to be restricted to the Amish; however, we identified 2 Omani families with HSP, short stature, dysarthria and developmental delay,core features of Troyer syndrome,and a novel mutation in the SPG20 gene, which is also mutated in the Amish. In addition, we analyzed SPG20 expression throughout development to infer how disruption of this gene might generate the constellation of developmental and degenerative Troyer syndrome phenotypes. Methods Clinical characterization of 2 non-Amish families with Troyer syndrome was followed by linkage and sequencing analysis. Quantitative polymerase chain reaction and in situ hybridization analysis of SPG20 expression were carried out in embryonic and adult human and mouse tissue. Results Two Omani families carrying a novel SPG20 mutation displayed clinical features remarkably similar to the Amish patients with Troyer syndrome. SPG20 mRNA is expressed broadly but at low relative levels in the adult brain; however, it is robustly and specifically expressed in the limbs, face, and brain during early morphogenesis. Interpretation Null mutations in SPG20 cause Troyer syndrome, a specific clinical entity with developmental and degenerative features. Maximal expression of SPG20 in the limb buds and forebrain during embryogenesis may explain the developmental origin of the skeletal and cognitive defects observed in this disorder. ANN NEUROL 2010;67:516,525 [source]


Recombinase-activating gene 1 immunodeficiency: different immunological phenotypes in three siblings

ACTA PAEDIATRICA, Issue 6 2009
Srdjan Pasic
Abstract We report different immunological phenotypes in three siblings from consanguineous family with recombinase-activating gene 1 (RAG1) gene mutations. Null mutations of RAG genes result in severe combined immunodeficiency (SCID) with absent T and B cells. Hypomorphic mutations with retained activity of RAG genes may lead to a ,leaky' SCID with some features of Omenn syndrome (OS) or typical OS. In our three patients, homozygous, hypomorphic RAG1 gene mutation (g.368,369delAA) was detected. Two patients presented with T,B,SCID phenotype while the youngest patient developed T+B+NK+SCID phenotype with expansion of autologous T-cell receptor (TCR) ,,-positive T cells, increased immunoglobulin levels and retained ability for antibody production. Similar to originally reported patients with this newly recognized immune phenotype, our patient developed disseminated cytomegalovirus (CMV) infection and autoimmune cytopenia. Conclusion: In infants with disseminated cytomegalovirus infection and autoimmune cytopenia, even if basic immunologic investigation appears normal, RAG1 immunodeficiency should be considered. [source]


The mammalian KIR2.x inward rectifier ion channel family: expression pattern and pathophysiology

ACTA PHYSIOLOGICA, Issue 3 2010
T. P. De Boer
Abstract Inward rectifier currents based on KIR2.x subunits are regarded as essential components for establishing a stable and negative resting membrane potential in many excitable cell types. Pharmacological inhibition, null mutation in mice and dominant positive and negative mutations in patients reveal some of the important functions of these channels in their native tissues. Here we review the complex mammalian expression pattern of KIR2.x subunits and relate these to the outcomes of functional inhibition of the resultant channels. Correlations between expression and function in muscle and bone tissue are observed, while we recognize a discrepancy between neuronal expression and function. [source]


Genetic dissection reveals two separate pathways for rod and cone regeneration in the teleost retina

DEVELOPMENTAL NEUROBIOLOGY, Issue 5 2008
Ann C. Morris
Abstract Development of therapies to treat visual system dystrophies resulting from the degeneration of rod and cone photoreceptors may directly benefit from studies of animal models, such as the zebrafish, that display continuous retinal neurogenesis and the capacity for injury-induced regeneration. Previous studies of retinal regeneration in fish have been conducted on adult animals and have relied on methods that cause acute damage to both rods and cones, as well as other retinal cell types. We report here the use of a genetic approach to study progenitor cell responses to photoreceptor degeneration in the larval and adult zebrafish retina. We have compared the responses to selective rod or cone degeneration using, respectively, the XOPS-mCFP transgenic line and zebrafish with a null mutation in the pde6c gene. Notably, rod degeneration induces increased proliferation of progenitors in the outer nuclear layer (ONL) and is not associated with proliferation or reactive gliosis in the inner nuclear layer (INL). Molecular characterization of the rod progenitor cells demonstrated that they are committed to the rod photoreceptor fate while they are still mitotic. In contrast, cone degeneration induces both Müller cell proliferation and reactive gliosis, with little change in proliferation in the ONL. We found that in both lines, proliferative responses to photoreceptor degeneration can be observed as 7 days post fertilization (dpf). These two genetic models therefore offer new opportunities for investigating the molecular mechanisms of selective degeneration and regeneration of rods and cones. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008. [source]


Mutation spectrum in UVB-exposed skin epidermis of Xpa -knockout mice: Frequent recovery of triplet mutations

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 1 2007
Hironobu Ikehata
Abstract Knockout mutations in both alleles of the Xpa gene give rise to a complete deficiency in nucleotide excision repair (NER) in mammalian cells. We used transgenic mice harboring the ,-phage-based lacZ mutational reporter gene to study the effect of Xpa null mutation (Xpa,/,) on damage induction, repair, and mutagenesis in mouse skin epidermis after UVB irradiation. UVB induced equal amounts of cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (64PPs) in mouse skin epidermis of Xpa,/, and wild-type mice. Neither photolesion was removed in the Xpa,/, epidermis by 12 hr after irradiation whereas removal of 64PPs was observed in the epidermis of wild-type mice. Irradiation with 200 and 300 J/m2 UVB increased the lacZ mutant frequency in the epidermis of Xpa,/, mice, but the induced mutant frequencies were not significantly different from those previously determined for wild-type mice. One-hundred lacZ mutants isolated from the UVB-exposed epidermis of Xpa,/, mice were analyzed and compared with mutant sequences previously determined for irradiated wild-type mice. The distribution of the mutations along the lacZ transgene and the preferred dipyrimidine context of the UV-specific mutations were similar in mutants from the Xpa,/, and wild-type mice. The spectra of the mutations in the two genotypes were both highly UV-specific and similar in a dominance of C , T transitions at dipyrimidine sites; however, Xpa,/, mice had a higher frequency than wild-type mice of two-base tandem substitutions, including CC , TT mutations, three-base tandem mutations and double base substitutions that were separated by one unchanged base in a three-base sequence (alternating mutations). These tandem/alternating mutations included a remarkably large number of triplet mutations, a recently reported, novel type of UV-specific mutation, characterized by multiple base substitutions or frameshifts within a three-nucleotide sequence containing a dipyrimidine. We conclude that the triplet mutation is a UV-specific mutation that preferably occurs in NER-deficient genetic backgrounds. Environ. Mol. Mutagen., 2007. © 2006 Wiley-Liss, Inc. [source]


Novel tumor necrosis factor-knockout mice that lack Peyer's patches

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2005
Dmitry
Abstract We generated a novel tumor necrosis factor (TNF) null mutation using Cre-loxP technology. Mice homozygous for this mutation differ from their "conventional" counterparts; in particular, they completely lack Peyer's patches (PP) but retain all lymph nodes. Our analysis of these novel TNF-knockout mice supports the previously disputed notion of the involvement of TNF-TNFR1 signaling in PP organogenesis. Availability of TNF-knockout strains both with and without PP enables more definitive studies concerning the roles of TNF and PP in various immune functions and disease conditions. Here, we report that systemic ablation of TNF, but not the presence of PP per se, is critical for protection against intestinal Listeria infection in mice. [source]


Increased fear- and stress-related anxiety-like behavior in mice lacking tuberoinfundibular peptide of 39 residues

GENES, BRAIN AND BEHAVIOR, Issue 8 2008
D. B. Fegley
Tuberoinfundibular peptide of 39 residues (TIP39) is synthesized by two groups of neurons, one in the subparafascicular area at the caudal end of the thalamus and the other in the medial paralemniscal nucleus within the lateral brainstem. The subparafascicular TIP39 neurons project to a number of brain regions involved in emotional responses, and these regions contain a matching distribution of a receptor for TIP39, the parathyroid hormone 2 receptor (PTH2-R). We have now evaluated the involvement of TIP39 in anxiety-related behaviors using mice with targeted null mutation of the TIP39 gene (Tifp39). Tifp39,/, mice (TIP39-KO) did not significantly differ from wild-type (WT) littermates in the open field, light/dark exploration and elevated plus-maze assays under standard test conditions. However, the TIP39-KO engaged in more active defensive burying in the shock-probe test. In addition, when tested under high illumination or after restraint, TIP39-KO displayed significantly greater anxiety-like behavior in the elevated plus-maze than WT. In a Pavlovian fear-conditioning paradigm, TIP39-KO froze more than WT during training and during tone and context recall but showed normal fear extinction. Disruption of TIP39 projections to the medial prefrontal cortex, lateral septum, bed nucleus of the stria terminalis, hypothalamus and amygdala likely account for the fear- and anxiety-related phenotype of TIP39-KO. Current data support the hypothesis that TIP39 modulates anxiety-related behaviors following environmental provocation. [source]


slowmo is required for Drosophila germline proliferation

GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 2 2007
Simon Reeve
Abstract Null mutations in the Drosophila gene, slowmo (slmo), result in reduced mobility and lethality in first-instar larvae. Slowmo encodes a mitochondrial protein of unknown function, as do the two other homologs found in Drosophila. Here, we have studied a hypomorphic P-element allele of slmo demonstrating its effects on germline divisions in both testes and ovaries. Using in situ studies, enhancer-trap activity, and promoter fusions, we have shown that slmo expression in testes is found in the somatic cyst cells (SCC). The hypomorphic allele for Slmo revealed apoptotic loss of germline cells in the larval germline, culminating in a complete absence of the germline in adult flies. In females, a similar degeneration of the germarium is observed, while reporter gene expression is found in both germline and somatic cells. Using a null mutation in female germline clones, we find slmo is dispensable from the germline cells. Our results suggest that Slowmo is not required in germline cells directly, but is required in SCCs responsible for maintaining germline survival in both sexes. genesis 45:66,75, 2007. © 2007 Wiley-Liss, Inc. [source]


Normal embryonic development and cardiac morphogenesis in mice with Wnt1-Cre-mediated deletion of connexin43

GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 6 2006
M. Kretz
Abstract Mice harboring a null mutation in the gap junction protein connexin43 (Cx43) die shortly after birth due to an obstruction of the right ventricular outflow tract of the heart. These hearts exhibit prominent pouches at the base of the pulmonary outlet, i.e., morphological abnormalities that were ascribed to Cx43-deficiency in neural crest cells. In order to examine the Cx43 expression pattern in neural crest cells and derived tissues and to test whether neural crest-specific deletion of Cx43 leads to the conotruncal defects seen in Cx43null mice, we ablated Cx43 using a Wnt1-Cre transgene. Deletion of Cx43 was complete and occurred in neural crest cells as well as in neural crest-derived tissues. Nevertheless, hearts of mice lacking Cx43 specifically in neural crest cells were indistinguishable from controls. Thus, the morphological heart abnormalities of Cx43 null mice are most likely not caused by lack of Cx43 in neural crest cells. genesis 44:269,276, 2006. © 2006 Wiley-Liss, Inc. [source]


Mutations in the holocarboxylase synthetase gene HLCS,

HUMAN MUTATION, Issue 4 2005
Yoichi Suzuki
Abstract Holocarboxylase synthetase (HLCS) deficiency is an autosomal recessive disorder. HLCS is an enzyme that catalyzes biotin incorporation into carboxylases and histones. Since the first report of the cDNA sequence, 30 mutations in the HLCS gene have been reported. Mutations occur throughout the entire coding region except exons 6 and 10. The types of mutations are one single amino acid deletion, five single nucleotide insertions/deletions, 22 missense mutations, and two nonsense mutations. The only intronic mutation identified thus far is c.1519+5G>A (also designated IVS10+5G>A), which causes a splice error. Several lines of evidence suggest that c.1519+5G>A is a founder mutation in Scandinavian patients. Prevalence of this mutation is about 10 times higher in the Faroe Islands than in the rest of the world. The mutations p.L237P and c.780delG are predominant only in Japanese patients. These are probably founder mutations in this population. Mutations p.R508W and p.V550M are identified in several ethic groups and accompanied with various haplotypes, suggesting that these are recurrent mutations. There is a good relationship between clinical biotin responsiveness and the residual activity of HLCS. A combination of a null mutation and a point mutation that shows less than a few percent of the normal activity results in neonatal onset. Patients who have mutant HLCS with higher residual activity develop symptom after the neonatal period and show a good clinical response to biotin therapy. Hum Mutat 26(4), 285,290, 2005. © 2005 Wiley-Liss, Inc. [source]


IGF-I Receptor Is Required for the Anabolic Actions of Parathyroid Hormone on Bone,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2007
Yongmei Wang
Abstract We showed that the IGF-IR,null mutation in mature osteoblasts leads to less bone and decreased periosteal bone formation and impaired the stimulatory effects of PTH on osteoprogenitor cell proliferation and differentiation. Introduction: This study was carried out to examine the role of IGF-I signaling in mediating the actions of PTH on bone. Materials and Methods: Three-month-old mice with an osteoblast-specific IGF-I receptor null mutation (IGF-IR OBKO) and their normal littermates were treated with vehicle or PTH (80 ,g/kg body weight/d for 2 wk). Structural measurements of the proximal and midshaft of the tibia were made by ,CT. Trabecular and cortical bone formation was measured by bone histomorphometry. Bone marrow stromal cells (BMSCs) were obtained to assess the effects of PTH on osteoprogenitor number and differentiation. Results: The fat-free weight of bone normalized to body weight (FFW/BW), bone volume (BV/TV), and cortical thickness (C.Th) in both proximal tibia and shaft were all less in the IGF-IR OBKO mice compared with controls. PTH decreased FFW/BW of the proximal tibia more substantially in controls than in IGF-IR OBKO mice. The increase in C.Th after PTH in the proximal tibia was comparable in both control and IGF-IR OBKO mice. Although trabecular and periosteal bone formation was markedly lower in the IGF-IR OBKO mice than in the control mice, endosteal bone formation was comparable in control and IGF-IR OBKO mice. PTH stimulated endosteal bone formation only in the control animals. Compared with BMSCs from control mice, BMSCs from IGF-IR OBKO mice showed equal alkaline phosphatase (ALP)+ colonies on day 14, but fewer mineralized nodules on day 28. Administration of PTH increased the number of ALP+ colonies and mineralized nodules on days 14 and 28 in BMSCs from control mice, but not in BMSCs from IGF-IR OBKO mice. Conclusions: Our results indicate that the IGF-IR null mutation in mature osteoblasts leads to less bone and decreased bone formation, in part because of the requirement for the IGF-IR in mature osteoblasts to enable PTH to stimulate osteoprogenitor cell proliferation and differentiation. [source]


Cyclo-Oxygenase 2 Function Is Essential for Bone Fracture Healing,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2002
Ann Marie Simon
Abstract Despite the molecular and histological similarities between fetal bone development and fracture healing, inflammation is an early phase of fracture healing that does not occur during development. Cyclo-oxygenase 2 (COX-2) is induced at inflammation sites and produces proinflammatory prostaglandins. To determine if COX-2 functions in fracture healing, rats were treated with COX-2-selective nonsteroidal anti-inflammatory drugs (NSAIDs) to stop COX-2-dependent prostaglandin production. Radiographic, histological, and mechanical testing determined that fracture healing failed in rats treated with COX-2-selective NSAIDs (celecoxib and rofecoxib). Normal fracture healing also failed in mice homozygous for a null mutation in the COX-2 gene. This shows that COX-2 activity is necessary for normal fracture healing and confirms that the effects of COX-2-selective NSAIDs on fracture healing is caused by inhibition of COX-2 activity and not from a drug side effect. Histological observations suggest that COX-2 is required for normal endochondral ossification during fracture healing. Because mice lacking Cox2 form normal skeletons, our observations indicate that fetal bone development and fracture healing are different and that COX-2 function is specifically essential for fracture healing. [source]


Mice with the deleted neurofilament of low molecular weight (Nefl) gene: 2.

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2005
Effects on motor functions, spatial orientation
Abstract Mice with a null mutation of the Nefl gene were compared with normal controls in tests of motor activity, equilibrium, and spatial orientation. Despite a normal capacity to ambulate, NFL ,/, mice had fewer rears in an open field, crossed fewer segments on stationary beams, and fell more frequently when suspended on a horizontal bar. In addition, the distance swum before reaching the escape platform was greater in NFL ,/, mice than in controls during acquisition of place learning in the Morris water maze at the start of training. The motor impairments were linearly correlated with increased cytochrome oxidase activity seen in cerebellum and brainstem. These results indicate that, as early as 6 months, depletion of the NFL protein is sufficient to cause mild sensorimotor dysfunctions and spatial deficits, but without overt signs of paresis. © 2005 Wiley-Liss, Inc. [source]


A Polymorphism in the ,4 Nicotinic Receptor Gene (Chrna4) Modulates Enhancement of Nicotinic Receptor Function by Ethanol

ALCOHOLISM, Issue 5 2003
Christopher M. Butt
Background: Several studies indicate that ethanol enhances the activity of ,4,2 nicotinic acetylcholine receptors (nAChR). Our laboratory has identified a polymorphism in the ,4 gene that results in the substitution of an alanine (A) for threonine (T) at amino acid position 529 in the second intracellular loop of the ,4 protein. Mouse strains expressing the A variant have, in general, greater nAChR-mediated 86Rb+ efflux in response to nicotine than strains with the T variant. However, the possibility of the polymorphism modulating the effects of ethanol on the 86Rb+ efflux response has not been investigated. Methods: We have used the 86Rb+ efflux method to study the acute effects of ethanol on the function of the ,4,2 nAChR in the thalamus in six different mouse strains. Experiments were also performed on tissue samples taken from F2 intercross animals. The F2 animals were derived from A/J mice crossed with a substrain of C57BL/6J mice that carried a null mutation for the gene encoding the ,2 nAChR subunit. Results: In strains carrying the A polymorphism (A/J, AKR/J, C3H/Ibg), coapplication of ethanol (10,100 mM) with nicotine (0.03,300 ,M) increased maximal ion flux when compared with nicotine alone with no effect on agonist potency. In contrast, ethanol had little effect on the nicotine concentration-response curve in tissue prepared from strains carrying the T polymorphism (Balb/Ibg, C57BL/6J, C58/J). Experiments with the F2 hybrids demonstrated that one copy of the A polymorphism was sufficient to produce a significant enhancement of nAChR function by ethanol (50 mM) in animals that were also ,2 +/+. Ethanol had no effect on nicotine concentration-response curves in T/T ,2 +/+ animals. Conclusions: The results suggest that the A/T polymorphism influences the initial sensitivity of the ,4,2 nAChR to ethanol. [source]


Myelin thickenings in val 102/fs null mutation of MPZ gene

JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 2 2004
MV De Angelis
Myelin thickenings, abnormal myelin foldings and tomacula have been rarely described in CMT1B. In two unrelated patients of different age (patient 1: 29 years old; patient 2: 65 years old) with CMT1B and Val 102/fs null mutation of MPZ gene we performed morphometric analysis, teased fibers and ultrastructural examination of sural nerve. We found: 1) markedly decreased fiber density with prevalent loss of large diameter fibers (patient 1: 4419 fibers/mm2; patient 2: 1326 fibers/mm2); 2) evidence of de-remyelination; and 3) paranodal and internodal myelin thickenings in virtually all fibers. Patient 1 has myelin thickenings measuring more than 50% of the fiber diameter in 14% of fibers and thickenings greater than 30% in 33% of fibers. Patients 2 presents myelin thickenings measuring more than 50% of fiber diameter in 23% of fibers and thickening greater than 30% in 49% of fibers. When considering the absolute measure of myelin thickenings and their number over 100 internodes, patient 1 presents 150 small myelin thickenings (<8 mm of diameter) whereas patient 2 has 57. The number of globules (8,12 mm of diameter) is 56 in patient 1 and 45 in patient 2. The number of myelin thickenings greater than 12 mm is 33 in patient 1 and 45 in patient 2. Ultrathin sections showed myelin infoldings, outfoldings and uncompacted myelin. CMT1B with a heterozygous null mutation of MPZ gene is characterized by abundant focal myelin thickenings. Similar findings have been described in the P0 deficient heterozygous mice. [source]


BONE MARROW TRANSFER FROM WILD-TYPE MICE REVERTS THE BENEFICIAL EFFECT OF GENETICALLY MEDIATED IMMUNE DEFICIENCY IN MYELIN MUTANTS

JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 1 2002
M Maurer
Inherited demyelinating neuropathies are chronically disabling human disorders caused by various genetic defects, including deletions, single site mutations, and duplications in the respective myelin genes. We have shown in a mouse model of one distinct hereditary demyelinating neuropathy (heterozygous PO-deficiency, PO±) that an additional null mutation in the recombination activating gene-1 (RAG-1--) leads to a substantially milder disorder, indicating a disease modifying role of T-lymphocytes. In the present study, we addressed the role of lymphocytes in the mouse model by reconstituting bone marrow of PO±/RAG-1-- mice with bone marrow from immunocompetent wild-type mice. We compared the pathology and nerve conduction in double mutant mice (PO±/RAG-1-- on a C57BL/6 background) with that in double mutants after receiving a bone marrow transplant. We found that the milder demyelination seen in the lymphocyte-deficient PO±/RAG-1-- mutants was reverted to the more severe pathology by reestablishing a competent immune system by bone marrow transfer. These data corroborate the concept that the immune system contributes substantially to the pathologic process in this mouse model and may open new avenues to ameliorate human hereditary neuropathies by exploiting immunosuppressive treatments. [source]


The Myxococcus xanthus socE and csgA genes are regulated by the stringent response

MOLECULAR MICROBIOLOGY, Issue 4 2000
Eugene W. Crawford Jr
Disruption of the Myxococcus xanthus socE gene bypasses the requirement for the cell contact-dependent C-signalling system mediated by CsgA and restores fruiting body morphogenesis and spore differentiation. The socE gene has been identified by genetic complementation, cloned and sequenced. SocE is highly basic, unique and is predicted to be a soluble protein with a molecular size of 53.6 kDa. The socE and csgA genes have opposite transcription patterns during the M. xanthus life cycle. socE expression is high in growing cells and declines during the early stages of development. Expression of csgA is low in vegetative cells and increases during development. socE transcription is negatively regulated by the stringent response, the major amino acid-sensing pathway in M. xanthus. A relA null mutation, which eliminates the stringent response, prevents the decline in socE expression normally observed at the onset of development. CsgA is positively regulated by the stringent response and is negatively regulated by socE. A relA mutation virtually eliminates developmental csgA expression. Expression of socE in Escherichia coli leads to a rapid loss of viability in relA, cells during stationary phase, suggesting a relationship with the stringent response. [source]


Smith-Lemli-Opitz syndrome: New mutation with a mild phenotype

AMERICAN JOURNAL OF MEDICAL GENETICS, Issue 1 2002
Chitra Prasad
Abstract Smith-Lemli-Opitz syndrome (SLOS) (Online Mendelian Inheritance in Man, OMIMÔ, 2001, http://www.ncbi.nlm.nih.gov/omim/ for SLOS, MIM 270400) is an autosomal recessive disorder of cholesterol biosynthesis caused by mutations of the 3,-hydroxysterol ,7 -reductase gene, DHCR7. We report on a female infant with an exceptionally mild phenotype of SLOS, in whom molecular studies identified a new mutation in DHCR7. The proposita initially presented with feeding difficulties, failure to thrive, hypotonia, mild developmental delay, and oral tactile aversion. She had minor facial anomalies and 2,3 syndactyly of her toes in both feet. The plasma cholesterol was borderline low at 2.88 mmol/L (normal 2.97,4.40 mmol/L). Elevated plasma 7-dehydrocholesterol level of 200.0 ,mol/L confirmed the clinical diagnosis of SLOS. Molecular analysis demonstrated compound heterozygosity for IVS8-1G ,C and Y280C, a new missense mutation in DHCR7. Since the other mutation in this patient is a known null mutation, this newly discovered mutation is presumably associated with significant residual enzyme activity and milder expression of clinical phenotype. © 2002 Wiley-Liss, Inc. [source]


Biochemical properties of V91G calmodulin: A calmodulin point mutation that deregulates muscle contraction in Drosophila

PROTEIN SCIENCE, Issue 12 2004
Bo Wang
Abstract A mutation (Cam7) to the single endogenous calmodulin gene of Drosophila generates a mutant protein with valine 91 changed to glycine (V91G D-CaM). This mutation produces a unique pupal lethal phenotype distinct from that of a null mutation. Genetic studies indicate that the phenotype reflects deregulation of calcium fluxes within the larval muscles, leading to hypercontraction followed by muscle failure. We investigated the biochemical properties of V91G D-CaM. The effects of the mutation on free CaM are minor: Calcium binding, and overall secondary and tertiary structure are indistinguishable from those of wild type. A slight destabilization of the C-terminal domain is detectable in the calcium-free (apo-) form, and the calcium-bound (holo-) form has a somewhat lower surface hydrophobicity. These findings reinforce the indications from the in vivo work that interaction with a specific CaM target(s) underlies the mutant defects. In particular, defective regulation of ryanodine receptor (RyR) channels was indicated by genetic interaction analysis. Studies described here establish that the putative CaM binding region of the Drosophila RyR (D-RyR) binds wild-type D-CaM comparably to the equivalent CaM-RyR interactions seen for the mammalian skeletal muscle RyR channel isoform (RYR1). The V91G mutation weakens the interaction of both apo- and holo-D-CaM with this binding region, and decreases the enhancement of the calcium-binding affinity of CaM that is detectable in the presence of the RyR target peptide. The predicted functional consequences of these changes are consonant with the in vivo phenotype, and indicate that D-RyR is one, if not the major, target affected by the V91G mutation in CaM. [source]


Glial cell line-derived neurotrophic factor-responsive and neurotrophin-3-responsive neurons require the cytoskeletal linker protein dystonin for postnatal survival

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 2 2001
Julie A. Carlsten
Abstract We have investigated the fate of different neurotrophin-responsive subpopulations of dorsal root ganglion neurons in dystonia musculorum (dt) mice. These mice have a null mutation in the cytoskeletal linker protein, dystonin. Dystonin is expressed by all sensory neurons and cross links actin filaments, intermediate filaments, and microtubules. The dt mice undergo massive sensory neurodegeneration postnatally and die at around 4 weeks of age. We assessed the surviving and degenerating neuronal populations by comparing the dorsal root ganglion (DRG) neurons and central and peripheral projections in dt mice and wildtype mice. Large, neurofilament-H-positive neurons, many of which are muscle afferents and are neurotrophin-3 (NT-3)-responsive, were severely decreased in number in dt DRGs. The loss of muscle afferents was correlated with a degeneration of muscle spindles in skeletal muscle. Nerve growth factor (NGF)-responsive populations, which were visualized using calcitonin gene-related peptide and p75, appeared qualitatively normal in the lumbar spinal cord, DRG, and hindlimb skin. In contrast, glial cell line-derived neurotrophic factor (GDNF)-responsive populations, which were visualized using the isolectin B-4 and thiamine monophosphatase, were severely diminished in the lumbar spinal cord, DRG, and hindlimb skin. Analysis of NT-3, NGF, and GDNF mRNA levels using semiquantitative reverse transcriptase-polymerase chain reaction revealed normal trophin synthesis in the peripheral targets of dt mice, arguing against decreased trophic synthesis as a possible cause of neuronal degeneration. Thus, the absence of dystonin results in the selective survival of NGF-responsive neurons and the postnatal degeneration of many NT-3- and GDNF-responsive neurons. Our results reveal that the loss of this ubiquitously expressed cytoskeletal linker has diverse effects on sensory subpopulations. Moreover, we show that dystonin is critical for the maintenance of certain DRG neurons, and its function may be related to neurotrophic support. J. Comp. Neurol. 432:155,168, 2001. © 2001 Wiley-Liss, Inc. [source]


Serum biomarker for progranulin-associated frontotemporal lobar degeneration,

ANNALS OF NEUROLOGY, Issue 5 2009
Kristel Sleegers MD
Objective Mutations that lead to a loss of progranulin (PGRN) explain a considerable portion of the occurrence of frontotemporal lobar degeneration. We tested a biomarker allowing rapid detection of a loss of PGRN. Methods We used an enzyme-linked immunosorbent assay to measure in serum the PGRN protein levels of six affected and eight unaffected carriers from within an extended Belgian founder family segregating the null mutation IVS1+5G>C. Further, we measured serum PGRN levels in 2 patients with another null mutation (a Met1 and a frameshift mutation), in 4 patients carrying a predicted pathogenic missense mutation and in 5 patients carrying a benign missense polymorphism, in 9 unaffected noncarrier relatives, and in 22 community controls. Results Serum PGRN levels were reduced in both affected and unaffected null mutation carriers compared with noncarrier relatives (pexact < 0.0001), and allowed perfect discrimination between carriers and noncarriers (sensitivity: 1.0; 1 , specificity: 0.0). Serum PGRN levels in Cys139Arg and Arg564Cys mutation carriers were significantly lower than in controls, but greater than in null mutation carriers, fitting the hypothesis of partial loss of function caused by these missense mutations. As expected, levels for carriers of benign missense polymorphisms were not significantly different from controls. Interpretation Our results indicate that the serum PGRN level is a reliable biomarker for diagnosing and early detection of frontotemporal lobar degeneration caused by PGRN null mutations, and provided the first in vivo evidence that at least some missense mutations in PGRN may lead to a (partial) loss of PGRN. Ann Neurol 2009 [source]


Schwann cell expression of PLP1 but not DM20 is necessary to prevent neuropathy

ANNALS OF NEUROLOGY, Issue 3 2003
Michael E. Shy MD
Proteolipid protein (PLP1) and its alternatively spliced isoform, DM20, are the major myelin proteins in the CNS, but are also expressed in the PNS. The proteins have an identical sequence except for 35 amino acids in PLP1 (the PLP1-specific domain) not present in DM20. Mutations of PLP1/DM20 cause Pelizaeus-Merzbacher Disease (PMD), a leukodystrophy, and in some instances, a peripheral neuropathy. To identify which mutations cause neuropathy, we have evaluated a cohort of patients with PMD and PLP1 mutations for the presence of neuropathy. As shown previously, all patients with PLP1 null mutations had peripheral neuropathy. We also identified 4 new PLP1 point mutations that cause both PMD and peripheral neuropathy, three of which truncate PLP1 expression within the PLP1-specific domain, but do not alter DM20. The fourth, a splicing mutation, alters both PLP1 and DM20, and is probably a null mutation. Six PLP1 point mutations predicted to produce proteins with an intact PLP1-specific domain do not cause peripheral neuropathy. Sixty-one individuals with PLP1 duplications also had normal peripheral nerve function. These data demonstrate that expression of PLP1 but not DMSO is necessary to prevent neuropathy, and suggest that the 35 amino acid PLP1-specific domain plays an important role in normal peripheral nerve function. Ann Neurol 2003 [source]


Endothelial nitric oxide synthase deficiency in mice results in reduced chondrocyte proliferation and endochondral bone growth

ARTHRITIS & RHEUMATISM, Issue 7 2010
Qian Yan
Objective Nitric oxide (NO) and aberrant chondrocyte differentiation have both been implicated in the pathogenesis of osteoarthritis, but whether these processes are connected is unknown, and the role of specific NO synthase (NOS) enzymes in chondrocyte physiology is unclear. This study was undertaken to examine the effects of inactivation of endothelial cell NOS (eNOS) on cartilage development in mice. Methods Skeletal growth and development of mice carrying a null mutation in the eNOS gene was compared with that of their control littermates. In situ analyses were complemented by experiments with primary chondrocytes and tibial explants from these mice. Results Mice that were deficient in eNOS showed increased fatality and reduced bone growth, with hypocellular growth plates and a marked reduction in the number of proliferating chondrocytes. In vitro studies demonstrated lower chondrocyte numbers and reduced endochondral bone growth in mutant mice, suggesting that the role of eNOS signaling in chondrocyte proliferation is cell autonomous. Reduced chondrocyte numbers appear to be caused by decreased cyclin D1 and increased p57 expression in mutant mice, resulting in slower cell cycle progression and earlier cell cycle exit. In addition, expression of early chondrocyte markers such as SOX9 was reduced, and prehypertrophic markers were expressed prematurely in mutant mice. Conclusion Our findings identify a novel and important role of eNOS in chondrocyte proliferation and endochondral bone growth and demonstrate that loss of eNOS results in premature cell cycle exit and prehypertrophic chondrocyte differentiation during cartilage development. [source]


CtBP family proteins: More than transcriptional corepressors

BIOESSAYS, Issue 1 2003
G. Chinnadurai
CtBP family proteins predominantly function as transcriptional corepressors. Studies with mutant mouse suggest that the two mouse genes, Ctbp1 and Ctbp2, play unique and redundant gene regulatory roles during development.1Ctbp1 -deficient mice are viable, but are small and die early, while Ctbp2 deficiency leads to embryonic lethality. Ctbp2 -null mutation causes defects in axial patterning, heart morphogenesis and neural development. The Ctbp2 mutant phenotype is more severe in the absence of Ctbp1. The studies with Ctbp2 mutant embryos suggest that CtBP can also activate transcription. A plant CtBP homolog, Angustifolia (AN), has recently been identified.2,3AN controls polar elongation of leaf cells via the microtubule cytoskeleton. Microarray analysis suggests that AN also functions as a transcriptional repressor. Thus, the CtBP family proteins control cellular processes by serving as transcriptional activators and regulators of the cytoskeleton as well as transcriptional corepressors. BioEssays 25:9,12, 2003. © 2002 Wiley Periodicals, Inc. [source]


Characteristics of Saccharomyces cerevisiae gal1, and gal1,hxk2, mutants expressing recombinant proteins from the GAL promoter

BIOTECHNOLOGY & BIOENGINEERING, Issue 6 2005
Hyun Ah Kang
Abstract Galactose can be used not only as an inducer of the GAL promoters, but also as a carbon source by Saccharomyces cerevisiae, which makes recombinant fermentation processes that use GAL promoters complicated and expensive. To overcome this problem during the cultivation of the recombinant strain expressing human serum albumin (HSA) from the GAL10 promoter, a gal1, mutant strain was constructed and its induction kinetics investigated. As expected, the gal1, strain did not use galactose, and showed high levels of HSA expression, even at extremely low galactose concentrations (0.05,0.1 g/L). However, the gal1, strain produced much more ethanol, in a complex medium containing glucose, than the GAL1 strain. To improve the physiological properties of the gal1, mutant strain as a host for heterologous protein production, a null mutation of either MIG1 or HXK2 was introduced into the gal1, mutant strain, generating gal1,mig1, and gal1,hxk2, double strains. The gal1,hxk2, strain showed a decreased rate of ethanol synthesis, with an accelerated rate of ethanol consumption, compared to the gal1, strain, whereas the gal1,mig1, strain showed similar patterns to the gal1, strain. Furthermore, the gal1,hxk2, strain secreted much more recombinant proteins (HSA and HSA fusion proteins) than the other strains. The results suggest that the gal1,hxk2, strain would be useful for the large-scale production of heterologous proteins from the GAL10 promoter in S. cerevisiae. © 2005 Wiley Periodicals, Inc. [source]


A heterozygous null mutation combined with the G1258A polymorphism of SPINK5 causes impaired LEKTI function and abnormal expression of skin barrier proteins

BRITISH JOURNAL OF DERMATOLOGY, Issue 2 2009
W-L. Di
Summary Background, Loss-of-function mutations in the Kazal-type serine protease inhibitor, LEKTI, encoded by the SPINK5 gene cause the rare autosomal recessive skin disease Netherton syndrome (NS). G1258A polymorphism in SPINK5 may be associated with atopic dermatitis, which shares several clinical features with NS. Objectives, To determine if the phenotype of NS can be caused by a single null mutation in SPINK5 combined with the homozygous G1258A polymorphism. Methods, We screened mutations in the gene SPINK5 by direct DNA sequencing and position cloning and examined the expressions of the SPINK5 -encoded protein LEKTI and other relevant proteins by immunostaining and immunoblot. Results, We describe here a patient who was clinically diagnosed with NS and carried a single null mutation in SPINK5 combined with the homozygous G1258A polymorphism. SPINK5 mRNA was present at normal levels and LEKTI was expressed in the epidermis. Nonetheless, the putative downstream LEKTI substrates stratum corneum trypsin-like enzyme (SCTE), desmoglein 1 and protein markers of keratinocyte differentiation were expressed abnormally, similar to that seen in NS if two null mutant alleles are present. Conclusion, This finding indicates that haploinsufficiency of SPINK5 can cause the NS phenotype in the presence of one null mutation with homozygous G1258A polymorphisms in SPINK5, and this could impair the function of LEKTI and therefore acts as a true mutation. [source]