Novo Protein Synthesis (novo + protein_synthesis)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Novo Protein Synthesis

  • de novo protein synthesis

  • Selected Abstracts

    Metaplasticity of the late-phase of long-term potentiation: a critical role for protein kinase A in synaptic tagging

    Jennie Z. Young
    Abstract The late-phase of long-term potentiation (L-LTP) in hippocampal area CA1 requires gene expression and de novo protein synthesis but it is expressed in an input-specific manner. The ,synaptic tag' theory proposes that gene products can only be captured and utilized at synapses that have been ,tagged' by previous activity. The mechanisms underlying synaptic tagging, and its activity dependence, are largely undefined. Previously, we reported that low-frequency stimulation (LFS) decreases the stability of L-LTP in a cell-wide manner by impairing synaptic tagging. We show here that a phosphatase inhibitor, okadaic acid, blocked homosynaptic and heterosynaptic inhibition of L-LTP by prior LFS. In addition, prior LFS homosynaptically and heterosynaptically impaired chemically induced synaptic facilitation elicited by forskolin/3-isobutyl-1-methylxanthine, suggesting that there is a cell-wide dampening of cAMP/protein kinase A (PKA) signaling concurrent with phosphatase activation. We propose that prior LFS impairs expression of L-LTP by inhibiting synaptic tagging through its actions on the cAMP/PKA pathway. In support of this notion, we show that hippocampal slices from transgenic mice that have genetically reduced hippocampal PKA activity display impaired synaptic capture of L-LTP. An inhibitor of PKA, KT-5720, also blocked synaptic capture of L-LTP. Moreover, pharmacological activation of the cAMP/PKA pathway can produce a synaptic tag to capture L-LTP expression, resulting in persistent synaptic facilitation. Collectively, our results show that PKA is critical for synaptic tagging and for input-specific L-LTP. PKA-mediated signaling can be constrained by prior episodes of synaptic activity to regulate subsequent L-LTP expression and perhaps control the integration of multiple synaptic events over time. [source]

    Induction of rapid, activity-dependent neuronal,glial remodelling in the adult rat hypothalamus in vitro

    Sarah L. Langle
    Abstract The hypothalamic oxytocinergic system offers a remarkable model of morphological plasticity in the adult because its neurons and astrocytes undergo mutual remodelling in relation to differing physiological conditions. Among various factors involved in such plasticity, oxytocin (OT) itself appears of primary importance as its central administration resulted in morphological changes similar to those brought on by physiological stimuli. In the present study, we applied OT on acute hypothalamic slices from adult rats that included the supraoptic nucleus. Using ultrastructural morphometric analyses, we found that it induced a significant reduction of astrocytic coverage of OT neurons, leaving their surfaces directly juxtaposed, to an extent similar to that detected in vivo under conditions like lactation. These neuronal,glial changes were rapid and reversible, occurring within a few hours, and specifically mediated via OT receptors. They were potentiated by oestrogen and depended on calcium mobilization and de novo protein synthesis. Moreover, they depended on concurrent neuronal activation brought on by hyperosmotic stimulation or blockade of inhibitory GABAergic neurotransmission; they were inhibited by blockade of glutamatergic receptors. Taken together, our observations show that intrahypothalamic release of OT affects not only neuronal activation of the OT system but its morphological plasticity as well. Moreover, the activity dependence of the OT-induced changes strongly suggests that astrocytes can sense the level of activity of adjacent neurons and/or afferent input and this can subsequently act as a signal to bring on the neuronal and glial conformational changes. [source]

    Regulated expression and dynamic changes in subnuclear localization of mammalian Rad18 under normal and genotoxic conditions

    GENES TO CELLS, Issue 8 2005
    Sadaharu Masuyama
    Rad18 plays a crucial role in postreplication repair in both lower eukaryotes and higher eukaryotes. However, regulation of the Rad18 expression in higher eukaryotes is largely unknown. We found that the RAD18 transcript is expressed ubiquitously in various tissues and very highly in the testis in mammals. Although human RAD18 (hRAD18) transcription levels fluctuate during the cell cycle, being maximal in the late S and minimal in the early G1, the protein levels remain constant throughout the cell cycle. Following UV-irradiation, hRAD18 transcription levels decrease significantly, but Rad18 protein levels change little. The protein levels are maintained at least in part by enhanced translation rates. hRad18 localizes in the nucleus in two forms: a diffused form and a condensed form forming nuclear dots. These nuclear dots disperse rapidly in the nucleoplasm after treatments with various genotoxic agents, resulting in an enhancement of the intranuclear Rad18 concentration of the diffused form. No de novo protein synthesis is required for this process. These results suggest that in higher eukaryotes, the maintenance and dynamic translocation of Rad18 protein is important for postreplication repair. [source]

    Molecular mechanism of preconditioning

    IUBMB LIFE, Issue 4 2008
    Manika Das
    Abstract During the last 20 years, since the appearance of the first publication on ischemic preconditioning (PC), our knowledge of this phenomenon has increased exponentially. PC is defined as an increased tolerance to ischemia and reperfusion induced by previous sublethal period ischemia. This is the most powerful mechanism known to date for limiting the infract size. This adaptation occurs in a biphasic pattern (i) early preconditioning (lasts for 2,3 h) and (ii) late preconditioning (starting at 24 h lasting until 72,96 h after initial ischemia). Early preconditioning is more potent than delayed preconditioning in reducing infract size. Late preconditioning attenuates myocardial stunning and requires genomic activation with de novo protein synthesis. Early preconditioning depends on adenosine, opioids and to a lesser degree, on bradykinin and prostaglandins, released during ischemia. These molecules activate G-protein-coupled receptor, initiate activation of KATP channel and generate oxygen-free radicals, and stimulate a series of protein kinases, which include protein kinase C, tyrosine kinase, and members of MAP kinase family. Late preconditioning is triggered by a similar sequence of events, but in addition essentially depends on newly synthesized proteins, which comprise iNOS, COX-2, manganese superoxide dismutase, and possibly heat shock proteins. The final mechanism of PC is still not very clear. The present review focuses on the possible role signaling molecules that regulate cardiomyocyte life and death during ischemia and reperfusion. 2008 IUBMB IUBMB Life, 60(4): 199,203, 2008 [source]

    Identification of Novel Regulators Associated With Early-Phase Osteoblast Differentiation,

    Diana S de Jong
    Abstract Key regulatory components of the BMP-induced osteoblast differentiation cascade remain to be established. Microarray and subsequent expression analyses in mice identified two transcription factors, Hey1 and Tcf7, with in vitro and in vivo expression characteristics very similar to Cbfa1. Transfection studies suggest that Tcf7 modulates BMP2-induced osteoblast differentiation. This study contributes to a better definition of the onset of BMP-induced osteoblast differentiation. Introduction: Elucidation of the genetic cascade guiding mesenchymal stem cells to become osteoblasts is of extreme importance for improving the treatment of bone-related diseases such as osteoporosis. The aim of this study was to identify regulators of the early phases of bone morphogenetic protein (BMP)2-induced osteoblast differentiation. Materials and Methods: Osteoblast differentiation of mouse C2C12 cells was induced by treatment with BMP2, and regulation of gene expression was studied during the subsequent 24 h using high-density microarrays. The regulated genes were grouped by means of model-based clustering, and protein functions were assigned. Real-time quantitative RT-PCR analysis was used to validate BMP2-induced gene expression patterns in C2C12 cells. Osteoblast specificity was studied by comparing these expression patterns with those in C3H10T1/2 and NIH3T3 cells under similar conditions. In situ hybridization of mRNA in embryos at embryonic day (E)14.5 and E16.5 of gestation and on newborn mouse tails were used to study in vivo expression patterns. Cells constitutively expressing the regulated gene Tcf7 were used to investigate its influence on BMP-induced osteoblast differentiation. Results and Conclusions: A total of 184 genes and expressed sequence tags (ESTs) were differentially expressed in the first 24 h after BMP2 treatment and grouped in subsets of immediate early, intermediate early, and late early response genes. Signal transduction regulatory factors mainly represented the subset of immediate early genes. Regulation of expression of these genes was direct, independent of de novo protein synthesis and independent of the cell type studied. The intermediate early and late early genes consisted primarily of genes related to processes that modulate morphology, basement membrane formation, and synthesis of extracellular calcified matrix. The late early genes require de novo protein synthesis and show osteoblast specificity. In vivo and in vitro experiments showed that the transcription factors Hey1 and Tcf7 exhibited expression characteristics and cell type specificity very similar to those of the osteoblast specific transcription factor Cbfa1, and constitutive expression of Tcf7 in C2C12 cells differentially regulated osteoblast differentiation marker genes. [source]

    High glucose levels upregulate upstream stimulatory factor 2 gene transcription in mesangial cells

    Lihua Shi
    Abstract Previously, we demonstrated that upstream stimulatory factor 2 (USF2) mediates high glucose-induced thrombospondin1 (TSP1) gene expression and TGF-, activity in glomerular mesangial cells and plays a role in diabetic renal complications. In the present studies, we further determined the molecular mechanisms by which high glucose levels regulate USF2 gene expression. In primary rat mesangial cells, we found that glucose treatment time and dose-dependently up-regulated USF2 expression (mRNA and protein). By using cycloheximide to block the de novo protein synthesis, similar rate of USF2 degradation was found under either normal glucose or high glucose conditions. USF2 mRNA stability was not altered by high glucose treatment. Furthermore, high glucose treatment stimulated USF2 gene promoter activity. By using the luciferase-promoter deletion assay, site-directed mutagenesis, and transactivation assay, we identified a glucose-responsive element in the USF2 gene promoter (,1,740 to ,1,620, relative to the transcription start site) and demonstrated that glucose-induced USF2 expression is mediated through a cAMP-response element-binding protein (CREB)-dependent transactivation of the USF2 promoter. Furthermore, siRNA-mediated CREB knock down abolished glucose-induced USF2 expression. Taken together, these data indicate that high glucose levels up-regulate USF2 gene transcription in mesangial cells through CREB-dependent transactivation of the USF2 promoter. J. Cell. Biochem. 103: 1952,1961, 2007. 2007 Wiley-Liss, Inc. [source]

    Vinculin, VASP, and profilin are coordinately regulated during actin remodeling in epithelial cells, which requires de novo protein synthesis and protein kinase signal transduction pathways

    Margaret P. Quinlan
    Transformation progression of epithelial cells involves alterations in their morphology, polarity, and adhesive characteristics, all of which are associated with the loss and/or reorganization of actin structures. To identify the underlying mechanism of formation of the adhesion-dependent, circumferential actin network, the expression and localization of the actin binding and regulating proteins (ABPs), vinculin, VASP, and profilin were evaluated. Experimental depolarization of epithelial cells results in the loss of normal F-actin structures and the transient upregulation of vinculin, VASP, and profilin. This response is due to the loss of cell,cell, and not cell,substrate interactions, since cells that no longer express focal adhesions or stress fibers are still sensitive to changes in adhesion and manifest this in the altered profile of expression of these ABPs. Transient upregulation is dependent upon de novo protein synthesis, and protein kinase-, but not phosphatase-sensitive signal transduction pathway(s). Inhibition of the synthesis of these proteins is accompanied by dephosphorylation of the ribosomal S6 protein, but does not involve inhibition of the PI3-kinase-Akt-mTOR pathway. Constitutive expression of VASP results in altered cell morphology and adhesion and F-actin and vinculin structures. V12rac1 expressing epithelial cells are constitutively nonadhesive, malignantly transformed, and constitutively express high levels of these ABPs, with altered subcellular localizations. Transformation suppression is accompanied by the restoration of normal levels of the three ABPs, actin structures, adhesion, and epithelial morphology. Thus, vinculin, VASP, and profilin are coordinately regulated by signal transduction pathways that effect a translational response. Additionally, their expression profile maybe indicative of the adhesion and transformation status of epithelial cells. J. Cell. Physiol. 200: 277,290, 2004. 2004 Wiley-Liss, Inc. [source]

    Reduction of intracellular pH inhibits constitutive expression of Cyclooxygenase-2 in human colon cancer cells

    Daniela Pirkebner
    Cyclooxygenase-2 (COX-2) over-expression is critically involved in tumor formation. Intracellular pH (pHi) has been shown to be alkaline in cancer cells, and to be an important trigger for cell proliferation. This study therefore analyzed the relationship between pHi and COX-2 expression. HRT-18 and Caco-2 cells cultured in medium with bicarbonate maintained a pHi of ,7.6, which is higher than that of non-neoplastic cells. Cells grown in bicarbonate-free medium with a pH at 6.8 showed a reduction in pHi to approximately 7.0. Importantly, reduction of pHi resulted in a complete inhibition of COX-2 mRNA and protein expression. When cells were grown in bicarbonate-supplemented medium at pH 6.8, pHi maintained at ,7.6 and COX-2 expression was not inhibited. Additionally, analysis utilizing protein synthesis inhibitor cycloheximide demonstrated that pHi mediated inhibition of COX-2 mRNA expression requires de novo protein synthesis of regulatory protein(s). These data strongly suggest that an alkaline pHi is an important trigger for constitutive COX-2 expression. Defining pHi -mediated mechanisms that govern the constitutive COX-2 expression may help in developing new strategies to block COX-2 over-expression in cancer cells. J. Cell. Physiol. 198: 295,301, 2004 2003 Wiley-Liss, Inc. [source]

    Delayed pre-conditioning by 3-nitropropionic acid prevents 3,4-methylenedioxymetamphetamine-induced 5-HT deficits

    Elena Puerta
    J. Neurochem. (2010) 114, 843,852. Abstract The aim of the present study was to investigate whether late pre-conditioning using 3-nitropropionic acid (3NP) prevents the 5-hydroxytryptamine (5-HT) deficits caused by the amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA) in the rat. For this purpose we administered 3NP 24 h before MDMA (3 5 mg/kg i.p., every 2 h) and rats were killed 7 days later. Pre-treatment of 3NP afforded complete protection against MDMA-induced 5-HT deficits independent of any effect on MDMA-induced hyperthermia or 5-HT transporter activity. To identify the transductional mechanisms responsible for the neuroprotective effect of 3NP, we first examined the involvement of nitric oxide (NO) by using selective inhibitors of all three nitric oxide synthase isoforms. Inhibition of endothelial and neuronal nitric oxide synthase, but not inducible nitric oxide synthase, reversed 3NP-induced pre-conditioning. The NO donor S -Nitroso- N -acetylpenicilamine mimicked 3NP effects further suggesting the involvement of NO in mediating 3NP protection. To investigate the involvement of NOS/soluble guanylate cyclase (sGC)/protein kinase G/mitochondrial ATP-sensitive potassium channels (mitoKATP) signaling pathway we examined the effect of 5-hydroxydecanoate (5-HD), a selective mitoKATP blocker, and 1H -(1,2,4)oxadiazolo[4,3- a]quinoxaline-1-one, a potent inhibitor of sGC, on 3NP-induced tolerance. 5-hydroxydecanoate, but not 1H -(1,2,4)oxadiazolo[4,3- a]quinoxaline-1-one, suppressed 3NP-mediated protection suggesting that mitoKATP opening, but not NO-mediated activation of sGC, participates in the mechanism underlying tolerance to MDMA. Our data also showed that the protective effect of 3NP was abolished by cycloheximide, supporting the involvement of de novo protein synthesis. In conclusion, 3NP-induced delayed tolerance against 5-HT deficits caused by MDMA occurs via NO production. [source]

    Multiple promoter elements required for leukemia inhibitory factor-stimulated M2 muscarinic acetylcholine receptor promoter activity

    George S. Laszlo
    Abstract Treatment of neuronal cells with leukemia inhibitory factor (LIF) results in increased M2 muscarinic acetylcholine receptor promoter activity. We demonstrate here that multiple promoter elements mediate LIF stimulation of M2 gene transcription. We identify a LIF inducible element (LIE) in the M2 promoter with high homology to a cytokine-inducible ACTG-containing sequence in the vasoactive intestinal peptide promoter. Mutagenesis of both a STAT (signal transducers and activators of transcription) element and the LIE in the M2 promoter is required to attenuate stimulation of M2 promoter activity by LIF completely. Mobility shift assays indicate that a LIF-stimulated complex binds to a 70 base pair M2 promoter fragment. Furthermore, a STAT element within this fragment can bind to LIF-stimulated nuclear STAT1 homodimers in vitro. Mutagenesis experiments show that cytokine-stimulated activation of M2 promoter activity requires tyrosine residues on glycoprotein 130 (gp130) that are also required for both STAT1 and STAT3 activation. Dominant negative STAT1 or STAT3 can block LIF-stimulated M2 promoter activity. Real-time RT-PCR analysis indicates that LIF-stimulated induction of M2 mRNA is partially dependent on protein synthesis. These results show that regulation of M2 gene transcription in neuronal cells by LIF occurs through a complex novel mechanism that is dependent on LIE, STAT and de novo protein synthesis. [source]

    Substance P release evoked by capsaicin or potassium from rat cultured dorsal root ganglion neurons is conversely modulated with bradykinin

    He-Bin Tang
    Abstract To clarify the molecular mechanism of substance P (SP) release from dorsal root ganglion (DRG) neurons, we investigated the involvement of several intracellular effectors in the regulation of SP release evoked by capsaicin, potassium or/and bradykinin. Bradykinin-evoked SP release from cultured adult rat DRG neurons was attenuated by either the mitogen-activated protein kinase kinase (MEK) inhibitor (U0126) or cycloheximide. As the long-term exposure of DRG neurons to bradykinin (3 h) resulted in extracellular signal-regulated kinase (ERK) phosphorylation at an early stage and thereafter induced cyclooxygenase-2 (COX-2) protein expression, which both contribute to the SP release triggered by bradykinin B2 receptor. The long-term exposure of DRG neurons to bradykinin enhanced the SP release by capsaicin, but attenuated that by potassium. Interestingly, the inositol 1,4,5-triphosphate (IP3)-induced calcium release blocker [2-aminoethyl diphenylborinate (2-APB)] not only inhibited the potassium-evoked SP release, but also completely abolished the enhancement of capsaicin-induced SP release by bradykinin from cultured DRG neurons. Together, these findings suggest that the molecular mechanisms of SP release by bradykinin involve the activation of MEK, and also require the de novo protein synthesis of COX-2 in DRG neurons. The IP3 -dependent calcium release could be involved in the processes of the regulation by bradykinin of capsaicin-triggered SP release. [source]

    Vitamin E protected cultured cortical neurons from oxidative stress-induced cell death through the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase

    Yumiko Numakawa
    Abstract The role of vitamin E in the CNS has not been fully elucidated. In the present study, we found that pre-treatment with vitamin E analogs including ,T (,-tocopherol), ,T3 (, -tocotrienol), ,T, and ,T3 for 24 h prevented the cultured cortical neurons from cell death in oxidative stress stimulated by H2O2, while Trolox, a cell-permeable analog of ,T, did not. The preventive effect of ,T was dependent on de novo protein synthesis. Furthermore, we found that ,T exposure induced the activation of both the MAP kinase (MAPK) and PI3 kinase (PI3K) pathways and that the ,T-dependent survival effect was blocked by the inhibitors, U0126 (an MAPK pathway inhibitor) or LY294002 (a PI3K pathway inhibitor). Interestingly, the up-regulation of Bcl-2 (survival promoting molecule) was induced by ,T application. The up-regulation of Bcl-2 did not occur in the presence of U0126 or LY294002, suggesting that ,T-up-regulated Bcl-2 is mediated by these kinase pathways. These observations suggest that vitamin E analogs play an essential role in neuronal maintenance and survival in the CNS. [source]

    Transcriptional Regulation of 2,,3,-Cyclic Nucleotide 3,-Phosphodiesterase Gene Expression by Cyclic AMP in C6 Cells

    M. Gravel
    Abstract: It was recently shown that the two transcripts encoding the isoforms of 2,,3,-cyclic nucleotide 3,-phosphodiesterase (CNP1 and CNP2) are differentially regulated during the process of oligodendrocyte maturation. In oligodendrocyte precursors, only CNP2 mRNA is present, whereas in differentiating oligodendrocytes, both CNP1 and CNP2 mRNAs are expressed. This pattern of CNP expression is likely due to stage-specific transcriptional regulation of the two CNP promoters during the process of oligodendrocyte differentiation. Here, we report the influence of increased intracellular cyclic AMP (cAMP) levels on the transcription of both CNP1 and CNP2 mRNAs in rat C6 glioma cells. We found that the transcription of CNP1 mRNA was significantly increased in comparison with that of CNP2 mRNA in cells treated with cAMP analogues to elevate intracellular cAMP levels. This up-regulation of CNP1 expression (a) is due to an increase of transcription, (b) requires de novo protein synthesis, and (c) requires the activity of protein kinase A. These results are physiologically significant and support the idea that a cAMP-mediated pathway is part of the molecular mechanisms regulating the expression of CNP1 in oligodendrocytes. The regulation of CNP1 promoter activity by cAMP was then investigated in stably transfected C6 cell lines containing various deletions of the CNP promoter directing the bacterial chloramphenicol acetyltransferase gene. We showed that the sequence between nucleotides -126 and -102 was essential for the cAMP-dependent induction of CNP1 expression. Gel retardation analysis showed that two protein-DNA complexes are formed between this sequence and nuclear factors from C6 cells treated or not treated with cAMP. This suggests that the induction of CNP1 mRNA transcription is not mediated by changes in binding of nuclear factors that interact directly with the -126/-102 sequence. Sequence analysis of this region revealed the presence of a putative activator protein-2 (AP-2) binding site. It is interesting that mutagenesis of this region resulted in a significant reduction in transcriptional responses to cAMP, implying a possible role for the AP-2 factor in the expression of CNP1. In addition, we have shown that putative binding sites for activator protein-4 and nuclear factor-1 adjacent to the AP-2 site are required for efficient induction of CNP1 expression by cAMP. Taken together, our results show that the cAMP-dependent accumulation of CNP1 mRNA appears to depend on the synergistic interaction of several regulatory elements. [source]

    Activation of adenosine triphosphate-sensitive potassium channels confers protection against rotenone-induced cell death: Therapeutic implications for Parkinson's disease

    Kwok-Keung Tai
    Abstract It is anticipated that further understanding of the protective mechanism induced by ischemic preconditioning will improve prognosis for patients of ischemic injury. It is not known whether preconditioning exerts beneficial actions in neurodegenerative diseases, in which ischemic injury plays a causative role. Here we show that transient activation of ATP-sensitive potassium channels, a trigger in ischemic preconditioning signaling, confers protection in PC12 cells and SH-SY5Y cells against neurotoxic effect of rotenone and MPTP, mitochondrial complex I inhibitors that have been implicated in the pathogenesis of Parkinson's disease. The degree of protection is in proportion to the bouts of exposure to an ATP-sensitive potassium channel opener, a feature reminiscent of ischemic tolerance in vivo. Protection is sensitive to a protein synthesis inhibitor, indicating the involvement of de novo protein synthesis in the protective processes. Pretreatment of PC12 cells with preconditioning stimuli FeSO4 or xanthine/xanthine oxidase also confers protection against rotenone-induced cell death. Our results demonstrate for the first time the protective role of ATP-sensitive potassium channels in a dopaminergic neuronal cell line against rotenone-induced neurotoxicity and conceptually support the view that ischemic preconditioning-derived therapeutic strategies may have potential and feasibility in therapy for Parkinson's disease. 2002 Wiley-Liss, Inc. [source]

    Basic fibroblast growth factor induces the expression of matrix metalloproteinase-3 in human periodontal ligament cells through the MEK2 mitogen-activated protein kinase pathway

    Atsushi Shimazu
    Basic fibroblast growth factor (bFGF, FGF-2) is one of the potent mitogens for periodontal ligament (PDL) cells. However, the role of bFGF on the matrix metalloproteinase-3 (MMP-3) expression in PDL cells is unknown. In this study, the effect of bFGF on MMP-3 expression in PDL cells and the mechanism of this process were examined. Human PDL cells were exposed to bFGF at various concentrations (0.01,10 ng/ml) in monolayer cultures. bFGF increased [3H]thymidine incorporation and suppressed proteoglycan synthesis concentration-dependently. However, similar concentration ranges of bFGF increased the release of the cell-associated proteoglycans into the medium. Furthermore, bFGF increased MMP-3 mRNA levels concentration-dependently as examined by reverse transcription-polymerase chain reaction (RT-PCR). Induction of MMP-3 after the stimulation with bFGF was observed as early as 12 h with maximal at 24 h. Thereafter, the MMP-3 mRNA level gradually decreased until 72 h. Cycloheximide blocked the induction of MMP-3 by bFGF, indicating the requirement of de novo protein synthesis for this stimulation. Furthermore, MMP-3 expression induced by bFGF was abrogated by U0126, a specific inhibitor of MEK1/2 and ERK1/2 in mitogen-activated protein (MAP) kinase pathway, not by PD98059, a specific inhibitor of MEK1. In addition, bFGF up-regulated the phosphorylated ERK1/2 in 5 min with the maximal at 20 min as examined by Western blotting, and U0126 inhibited the ERK1/2 phosphorylation induced by bFGF. These findings suggest that bFGF induces MMP-3 expression in PDL cells through the activation of the MEK2 in MAP kinase pathway. bFGF stimulation on MMP-3 synthesis may be involved in the control of the cell-associated proteoglycans in PDL cells during periodontal regeneration and degradation. [source]

    Protective effect of sulforaphane on indomethacin-induced cytotoxicity via heme oxygenase-1 expression in human intestinal Int 407 cells

    Chi-Tai Yeh
    Abstract Sulforaphane is known to be an indirect antioxidant that acts by inducing NF-E2-related factor 2 (Nrf2)-dependent phase II enzymes. In the present study, we investigated the effect of sulforaphane on the expression of heme oxygenase-1 (HO-1) in human intestinal Int 407 cells. RT-PCR and Western blot data revealed that sulforaphane induced an increase in HO-1 expression at the mRNA and protein levels, respectively. This induction was also marked by an increase in HO-1 activity. Actinomycin D (an RNA synthesis inhibitor) and cycloheximide (a protein synthesis inhibitor) inhibited sulforaphane-responsive HO-1 mRNA expression, indicating that sulforaphane is a requirement for transcription and de novo protein synthesis. Moreover, sulforaphane increased the nuclear levels of Nrf2 and increased the binding activity of nuclear proteins to the antioxidant responsive element consensus sequence. We also found that U0126, an ERK kinase inhibitor, suppressed the sulforaphane-induced HO-1 expression and nuclear translocation of Nrf2. Moreover, the cytoprotective effect of sulforaphane on indomethancin-induced cytotoxicity was partially blocked by ERK and HO-1 inhibitors, further demonstrating that sulforaphane attenuated oxidative stress through a pathway that involved ERK and HO-1. Taken together, this study gives additional support to the possible use of sulforaphane as a dietary preventive agent against oxidative stress-induced intestinal injury. [source]

    Trypanosome Alternative Oxidase is Regulated Post-transcriptionally at the Level of RNA Stability

    ABSTRACT In the bloodstream form of African trypanosomes, trypanosome alternative oxidase (TAO), the non-cytochrome ubiquinol:oxidoreductase, is the only terminal oxidase of the mitochondrial electron transport system. TAO is developmentally regulated during mitochondrial biogenesis in this parasite. During in vitro differentiation of Trypanosoma bmcei from the bloodstream to the procyclic form, the overall rate of oxygen consumption decreased about 80%. The mode of respiration changed over a 2- to 3-wk period from a cyanide-insensitive, SHAM-sensitive pathway to a predominantly cyanide-sensitive pathway. The TAO protein level gradually decreased to the level present in the procyclic forms during this 3-wk period. However, within the first week of differentiation, the TAO transcript level decreased about 90% and then in the following weeks it reached the level present in the established procyclic form, that is about 20% of that in bloodstream forms. Like other trypanosomatid genes TAO transcript synthesis remains unaltered in fully differentiated bloodstream and procyclic trypanosomes. The half-life of the TAO mRNA was about 3.2 h in the procyclic trypanosomes, whereas the TAO transcript level remained unaltered even after 4 h of incubation with actinomycin D in bloodstream forms. Inhibition of protein synthesis resulted in about a four-fold accumulation of the TAO transcript in the procyclic trypanosomes, comparable to the level present in the bloodstream forms. Thus, TAO is regulated at the level of mRNA stability and de novo protein synthesis is required for the reduction of the TAO mRNA pool in the procyclic form. [source]

    Induction and maintenance of late-phase long-term potentiation in isolated dendrites of rat hippocampal CA1 pyramidal neurones

    Catherine A. Vickers
    Expression of N -methyl- d -aspartate (NMDA) receptor-dependent long-term potentiation (LTP) in the CA1 region of the hippocampus can be divided into an early (1,2 h), protein synthesis-independent phase and a late (>4 h), protein synthesis-dependent phase. In this study we have addressed whether the de novo protein synthesis required for the expression of late-LTP can be sustained solely from the translation of mRNAs located in the dendrites of CA1 pyramidal neurones. Our results show that late-LTP, lasting at least 5 h, can be maintained in hippocampal slices where the dendrites located in stratum radiatum have been isolated from their cell bodies by a microsurgical cut. The magnitude of the potentiation of the slope of field EPSPs in these ,isolated' slices was similar to that recorded in ,intact' slices. Incubation of the slices with the mRNA translation inhibitor cycloheximide or the mammalian target of rapamycin (mTOR) inhibitor rapamycin blocked late-LTP in both ,intact' and ,isolated' slice preparations. In contrast, incubation of slices with the transcription inhibitor, actinomycin D, resulted in a reduction of sustained potentiation, at 4 h, in ,intact' slices while in ,isolated' slices the magnitude of potentiation was similar to that seen in untreated slices. These results indicate that late-LTP can be induced and maintained in ,isolated' dendritic preparations via translation of pre-existing mRNAs. [source]

    Interaction between two mitogen-activated protein kinases during tobacco defense signaling

    THE PLANT JOURNAL, Issue 2 2003
    Yidong Liu
    Summary Plant mitogen-activated protein kinases (MAPKs) represented by tobacco wounding-induced protein kinase (WIPK) have unique regulation at the level of transcription in response to stresses. By using transcriptional and translational inhibitors, it has been shown previously that WIPK gene expression and de novo protein synthesis are required for the high-level activity of WIPK in cells treated with elicitins from Phytophthora spp. However, regulation of WIPK expression and the role(s) of WIPK in plant disease resistance are unknown. In this report, we demonstrate that WIPK gene transcription is regulated by phosphorylation and de-phosphorylation events. Interestingly, salicylic acid-induced protein kinase (SIPK) was identified as the kinase involved in regulating WIPK gene expression based on both gain-of-function and loss-of-function analyses. This finding revealed an additional level of interaction between SIPK and WIPK, which share an upstream MAPKK, NtMEK2. Depending on whether WIPK shares its downstream targets with SIPK, it could either function as a positive feed-forward regulator of SIPK or initiate a new pathway. Consistent with the first scenario, co-expression of WIPK with the active mutant of NtMEK2 leads to accelerated hypersensitive response (HR)-like cell death in which SIPK also plays a role. Mutagenesis analysis revealed that the conserved common docking domain in WIPK is required for its function. Together with prior reports that (i) WIPK is activated in NN tobacco infected with tobacco mosaic virus, and (ii) PVX virus-induced gene silencing of WIPK attenuated N gene-mediated resistance, we concluded that WIPK plays a positive role in plant disease resistance, possibly through accelerating the pathogen-induced HR cell death. [source]

    Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen

    THE PLANT JOURNAL, Issue 6 2002
    Richard Moyle
    Summary Indole acetic acid (IAA/auxin) profoundly affects wood formation but the molecular mechanism of auxin action in this process remains poorly understood. We have cloned cDNAs for eight members of the Aux/IAA gene family from hybrid aspen (Populus tremula L. Populus tremuloides Michx.) that encode potential mediators of the auxin signal transduction pathway. These genes designated as PttIAA1-PttIAA8 are auxin inducible but differ in their requirement of de novo protein synthesis for auxin induction. The auxin induction of the PttIAA genes is also developmentally controlled as evidenced by the loss of their auxin inducibility during leaf maturation. The PttIAA genes are differentially expressed in the cell types of a developmental gradient comprising the wood-forming tissues. Interestingly, the expression of the PttIAA genes is downregulated during transition of the active cambium into dormancy, a process in which meristematic cells of the cambium lose their sensitivity to auxin. Auxin-regulated developmental reprogramming of wood formation during the induction of tension wood is accompanied by changes in the expression of PttIAA genes. The distinct tissue-specific expression patterns of the auxin inducible PttIAA genes in the cambial region together with the change in expression during dormancy transition and tension wood formation suggest a role for these genes in mediating cambial responses to auxin and xylem development. [source]

    MicroRNAs as Immune Regulators: Implications for Transplantation

    A. Harris
    The explosion of genetic information from recent advances in sequencing technologies, bioinformatics and genomics highlights the importance of understanding mechanisms involved in gene expression and regulation. Over the last decade, it has become clear that small ribonucleic acids (RNAs) are a central component of the cellular gene regulatory network. MicroRNAs (miRNAs) are a family of endogenous, small, noncoding single-stranded RNA of ,22 nucleotides in length that act as posttranscriptional gene regulatory elements. MicroRNAs can inhibit de novo protein synthesis by blocking translation through base-pairing with complementary messenger RNA (mRNA) and also suppress translation by promoting degradation of target mRNA. MicroRNAs are intimately involved in a variety of biologic processes including development, hematopoietic cell differentiation, apoptosis and proliferation. To date, over 800 human miRNAs have been identified, though the biologic function of only a fraction of miRNAs has been elucidated. Here, we discuss how miRNAs are produced, identified and quantitated, and focus on several key miRNAs that govern expression of genes relevant to allograft rejection, tolerance induction and posttransplant infection. Finally, we discuss potential ways in which the miRNA network can be modulated that ultimately may offer new strategies to promote long-term graft survival. [source]

    Nitric oxide selectively depletes macrophages in atherosclerotic plaques via induction of endoplasmic reticulum stress

    W Martinet
    Background and purpose: Macrophages in atherosclerotic plaques have a tremendous impact on atherogenesis and plaque destabilization. We previously demonstrated that treatment of plaques in cholesterol-fed rabbits with the nitric oxide (NO) donor molsidomine preferentially eliminates macrophages, thereby favouring features of plaque stability. In this study, we investigated the underlying mechanism. Experimental approach: Macrophages and smooth muscle cells (SMCs) were treated in vitro with the NO donors, spermine NONOate or S -nitroso- N -acetylpenicillamine (SNAP) as well as with the well-known endoplasmic reticulum (ER) stress inducers thapsigargin, tunicamycin, dithiothreitol or brefeldin A. Cell viability was analysed by Neutral Red viability assays. Cleavage of caspase-3, DNA fragmentation and ultrastructural changes were examined to characterize the type of macrophage death. Induction of ER stress was evaluated by measuring C/EBP homologous protein (CHOP) expression, phosphorylation of eukaryotic initiation factor 2, (eIF2a), splicing of X-box binding protein 1 (XBP1) and inhibition of protein synthesis. Key results: Macrophages and SMCs treated with spermine NONOate or SNAP showed several signs of ER stress, including upregulation of CHOP expression, hyperphosphorylation of eIF2,, inhibition of de novo protein synthesis and splicing of XBP1 mRNA. These effects were similar in macrophages and SMCs, yet only macrophages underwent apoptosis. Plaques from molsidomine-treated atherosclerotic rabbits showed a 2.7-fold increase in CHOP expression as compared to placebo. Beside NO, selective induction of macrophage death could be initiated with thapsigargin and tunicamycin. Conclusions and implications: Induction of ER stress explains selective depletion of macrophages in atherosclerotic plaques by a NO donor, probably via inhibition of protein synthesis. British Journal of Pharmacology (2007) 152, 493,500; doi:10.1038/sj.bjp.0707426; published online 13 August 2007 [source]

    Stimulation of DNA synthesis, activation of mitogen-activated protein kinase ERK2 and nuclear accumulation of c-fos in human aortic smooth muscle cells by ketamine

    CELL PROLIFERATION, Issue 3 2002
    V. Boulom
    Proliferation of vascular smooth muscle cells is known to be regulated by autocrine and paracrine stimuli, including extracellular matrix, reactive oxygen species, lipids, and biomechanical forces. The effect of many pharmacological agents to which smooth muscle cells may be exposed, however, is widely unexplored. Ketamine, an intravenous anaesthetic and a phencyclidine derivative, regulates diverse intracellular signalling pathways in smooth muscle cells, several of which are known to affect cell proliferation. The effect of ketamine on proliferative response of smooth muscle cells, however, is not determined. We tested the hypothesis that ketamine may regulate proliferation of smooth muscle cells, and investigated the effects of pharmacological doses of ketamine on their proliferative capacity by measuring DNA synthesis and activation of mitogen-activated protein (MAP) kinase signalling pathway in human aortic smooth muscle cells. DNA synthesis, as determined by incorporation of 3H-thymidine into DNA, was enhanced by 73% (P < 0.0001) and 130% (P < 0.0001) with 10 and 100 m ketamine, respectively. Ketamine-induced DNA synthesis was dependent on de novo protein synthesis, as it was abolished by an inhibitor of protein synthesis, cycloheximide. A synthetic inhibitor of MAP kinase pathway, PD98059, decreased 50% (P < 0.0001) of ketamine-induced DNA synthesis, suggesting that the activation of MAP kinase pathway was partially responsible for ketamine-induced effects. Consistently, in-gel kinase assay and in vitro kinase assay of cell lysates showed ketamine-induced MAP kinase activation and expression of ERK2 (extracellular signal-regulated kinase) in smooth muscle cells. This effect of ketamine was not dependent on de novo protein synthesis. Immunofluorescent light microscopy showed ketamine-induced nuclear accumulation of c-fos, a downstream effect of MAP kinase activation, in smooth muscle cells. In conclusion, these data support the hypothesis of the study and demonstrate that ketamine, by stimulating DNA synthesis in human aortic smooth muscle cells, may have an impact on proliferative capacity of these cells. The present results also demonstrate that ketamine induces the activation of MAP kinase pathway and nuclear accumulation of transcription factor c-fos in smooth muscle cells. They further demonstrate that the activation of MAP kinases is partially responsible for ketamine-induced DNA synthesis in human aortic smooth muscle cells. Together, these findings suggest that ketamine may play a role as a pharmacological regulator of mechanisms involved in proliferation of smooth muscle cells. [source]

    G-CSF-mediated inhibition of JNK is a key mechanism for Lactobacillus rhamnosus -induced suppression of TNF production in macrophages

    Sung O. Kim
    Summary Lactobacillus rhamnosus is a human commensal with known immunomodulatory properties. To date the mechanism of these immunomodulatory effects is not well understood. To unravel the immunomodulatory signalling mechanism, we investigated the effects of two strains of L. rhamnosus, L. rhamnosus GG and GR-1, in modulating production of tumour necrosis factor-, (TNF) in human monocytic cell line THP-1 and mouse macrophages. Live L. rhamnosus GG and GR-1 or their spent culture supernatant induced minuscule amounts of TNF production but large quantities of granulocyte-colony stimulating factor (G-CSF) in macrophages compared with those induced by pathogenic Escherichia coli GR-12 and Enterococcus faecalis. By using neutralizing antibodies and G-CSF receptor knockout mice, we demonstrated that G-CSF secreted from L. rhamnosus GG- and GR-1-exposed macrophages suppressed TNF production induced by E. coli - or lipopolysaccharide-activated macrophages through a paracrine route. The suppression of TNF production by G-CSF was mediated through activation of STAT3 and subsequent inhibition of c-Jun-N-terminal kinases (JNKs). The inhibition of JNK activation required STAT3,-mediated de novo protein synthesis. This demonstrates a novel role of G-CSF in L. rhamnosus -triggered anti-inflammatory effects and its mechanism in the suppression of TNF production in macrophages. [source]

    Constitutive secretion of the granule chymase mouse mast cell protease-1 and the chemokine, CCL2, by mucosal mast cell homologues

    J. K. Brown
    Summary Background The mucosal mast cell (MMC) granule-specific ,-chymase, mouse mast cell protease-1 (mMCP-1), is released systemically into the bloodstream early in nematode infection before parasite-specific IgE responses develop and TGF-,1 induces constitutive release of mMCP-1 by homologues of MMC in vitro. Intraepithelial MMC may also express the chemokine CCL2 (monocyte chemotactic protein-1) during nematode infection but the expression of this chemokine by MMC homologues has not been investigated. Objective To investigate the expression and to compare the mechanisms of constitutive release of the chymase, mMCP-1, and the chemokine, CCL2. Methods MMC homologues were generated by culturing bone marrow cells in the presence of TGF-,1, IL-3, IL-9 and stem cell factor (SCF). The intracellular distribution of mMCP-1 and CCL2 was examined by confocal microscopy. The involvement of the Golgi complex and of protein synthesis in the constitutive release of mMCP-1 and CCL2 was investigated using the Golgi-disrupting agent brefeldin A and cycloheximide to block protein synthesis. Secreted analytes were quantified by ELISA. Results mMCP-1 colocalized with Golgi matrix protein 130 but was most abundant in the granules, whereas CCL2 was not found in the granules but appeared to be located uniquely in the Golgi complex. Extracellular release of mMCP-1 was significantly inhibited (, 40%) by cycloheximide and by the Golgi-disrupting agent brefeldin A, indicating both continuous protein synthesis and transportation via the Golgi complex are required for optimal mMCP-1 secretion. A similar but more marked inhibitory effect with both compounds was demonstrated on the constitutive secretion of CCL2. Conclusion The culture conditions that promote mMCP-1 expression and release by MMC homologues also promote the expression and release of CCL2. Constitutive release involves de novo protein synthesis and requires a functional Golgi complex, suggesting that similar mechanisms of extracellular secretion operate for both mediators. [source]