Novel Subpopulation (novel + subpopulation)

Distribution by Scientific Domains


Selected Abstracts


Glutamate Receptor Subunit ,2 Is Highly Expressed in a Novel Population of Glial-Like Cells in Rat Pineal Glands in Culture

JOURNAL OF NEUROCHEMISTRY, Issue 3 2000
Shouki Yatsushiro
Abstract: The mammalian pineal gland uses L-glutamate as an intercellular chemical transmitter to regulate negatively melatonin synthesis. To receive glutamate signals, pinealocytes express at least three kinds of glutamate receptors: metabotropic receptor types 3 and 5 and an ionotropic receptor, GluR1. In this study, we examined whether or not the fourth class of ionotropic receptor, ,, which is known for its nondefinitive molecular function and its unique expression pattern in brain, is expressed in pineal gland. RT-PCR analyses with specific probes indicated the expression of mRNA of ,2 but not that of ,1 in pineal gland and cultured pineal cells. Western blotting analysis with polyclonal antibodies specific to the carboxyl-terminal region of the ,2 receptor recognized a single 110-kDa polypeptide of cerebellar membranes and specifically immunostained Purkinje cells. The ,2 antibodies recognized a 110-kDa polypeptide of pineal membranes and specifically immunostained huge glial-like cells with the occasional presence of several long, branching processes in a pineal cell culture. ,2 is not uniformly distributed throughout the cells and is relatively abundant at the periphery of the cell bodies and long processes, where the terminals of synaptophysin-positive processes of pinealocytes, a site for glutamate secretion, are frequently present. The ,2-positive cells constitute a very minor population among total pineal cells (,0.03%). Double immunolabeling with ,2 antibodies and antibodies against marker proteins for pineal interstitial cells clearly distinguishes ,2-positive pineal cells and other known interstitial cells, including glial fibrillary acidic protein- or vimentin-positive glial-like cells. These results indicated that the ,2 glutamate receptor is expressed in a novel subpopulation of pineal glial-like cells in culture and suggest the presence of a glutamate-mediated intercellular signal transduction mechanism between pinealocytes and ,2-expressing cells. The pineal cells may provide a good experimental system for studies on the function of glutamate receptor ,2. [source]


Induction of umbilical cord blood,derived ,2m,c-Met+ cells into hepatocyte-like cells by coculture with CFSC/HGF cells

LIVER TRANSPLANTATION, Issue 6 2005
Yunfang Wang
Several studies have indicated that adult stem cells derived from bone marrow (BM) and cord blood (CB) can differentiate into hepatocyte-like cells. This ability is important for the treatment of hepatic diseases with BM or CB as a potential approach. However, methods are still being developed for the efficient induction of stem cell differentiation and expansion to get enough cells to be useful. In the present study, we enriched a subset of umbilical cord blood ,2m,c-Met+ cells (UCBCCs) and investigated the combination effect of liver nonparenchymal cells (cirrhotic fat-storing cells [CFSCs]) and hepatocyte growth factor (HGF) on the induction of UCBCCs into hepatocyte-like cells. UCBCCs were cocultured with CFSC/HGF feeder layers either directly or separately using insert wells. Flow cytometric analysis showed that most UCBCCs were CD34+/,CD90+/,CD49f+CD29+Alb+AFP+. After cocultured with transgenic feeder layers for 7 days, UCBCCs displayed some morphologic characteristics of hepatocytes. Reverse-transcription polymerase chain reaction (RT-PCR) and immunofluorescence cell staining proved that the induced UCBCCs expressed several hepatocyte specific genes including AFP, Alb, CYP1B1 and cytokeratins CK18 and CK19. Furthermore, the induced cells displayed liver specific functions of indocyanine green (ICG) uptake, ammonium metabolism and albumin secretion. Hence, our data have demonstrated that UCBCCs might represent a novel subpopulation of CB-derived stem/progenitor cells capable of successful differentiation into hepatocyte-like cells when incubated with CFSC/HGF cells. In conclusion, not only HGF but also CFSCs and/or the secreted extracellular matrix (ECM) have been shown to be able to serve as essential microenvironment for hepatocyte differentiation. (Liver Transpl 2005;11:635,643.) [source]


A novel subpopulation of B-1 cells is enriched with autoreactivity in normal and lupus-prone mice

ARTHRITIS & RHEUMATISM, Issue 12 2009
Xuemei Zhong
Objective B-1 cells have long been suggested to play an important role in lupus. However, reports to date have been controversial regarding their pathogenic or protective roles in different animal models. We undertook this study to investigate a novel subpopulation of B-1 cells and its roles in murine lupus. Methods Lymphocyte phenotypes were assessed by flow cytometry. Autoantibody secretion was analyzed by enzyme-linked immunosorbent assay, autoantigen proteome array, and antinuclear antibody assay. Cell proliferation was measured by thymidine incorporation and 5,6-carboxyfluorescein succinimidyl ester dilution. B cell Ig isotype switching was measured by enzyme-linked immunospot assay. Results Anti,double-stranded DNA (anti-dsDNA) autoantibodies were preferentially secreted by a subpopulation of CD5+ B-1 cells that expressed programmed death ligand 2 (termed L2pB1 cells). A substantial proportion of hybridoma clones generated from L2pB1 cells reacted to dsDNA. Moreover, these clones were highly cross-reactive with other lupus-related autoantigens. L2pB1 cells were potent antigen-presenting cells and promoted Th17 cell differentiation in vitro. A dramatic increase of circulating L2pB1 cells in lupus-prone BXSB mice was correlated with elevated serum titers of anti-dsDNA antibodies. A significant number of L2pB1 cells preferentially switched to IgG1 and IgG2b when stimulated with interleukin-21. Conclusion Our findings identify a novel subpopulation of B-1 cells that is enriched for autoreactive specificities, undergoes isotype switch, manifests enhanced antigen presentation, promotes Th17 cell differentiation, and is preferentially associated with the development of lupus in a murine model. Together, these findings suggest that L2pB1 cells have the potential to initiate autoimmunity through serologic and T cell,mediated mechanisms. [source]