Novel Subfamily (novel + subfamily)

Distribution by Scientific Domains

Selected Abstracts

Origin of the murine implantation serine proteinase subfamily,

Colleen M. O'Sullivan
Abstract The S1 serine protease family is one of the largest gene families known. Within this family there are several subfamilies that have been grouped together as a result of sequence comparisons and substrate identification. The grouping of related genes allows for the speculation of function for newly found members by comparison and for novel subfamilies by contrast. Analysis of the evolutionary patterns of genes indicates whether or not orthologs are likely to be identified in other species as well as potentially indicating that hypothesized orthologs are in fact not. Looking at subtle differences between subfamily members can reveal intricacies about function and expression. Previously, we have described genes encoding two novel serine proteinases, ISP1 and ISP2, which are most closely related to tryptases. The ISP1 gene encodes the embryo-derived enzyme strypsin, which is necessary for blastocyst hatching and invasion in vitro. Additionally both ISP1 and ISP2 are co-expressed in the endometrial gland during the time of hatching, suggesting that they may also both participate in zona lysis from within the uterine lumen. Here, we demonstrate that the ISPs are tandemly linked within the tryptase cluster on 17A3.3. We suggest that remarkable similarities within the 5,-untranslated and first intron regions of ISP1 and ISP2 may explain their intimate co-regulation in uterus. We also suggest that ISP genes have evolved through gene duplication and that the ISP1 gene has also begun to adopt an additional new function in the murine preimplantation embryo. Mol. Reprod. Dev. 69: 126,136, 2004. 2004 Wiley-Liss, Inc. [source]

Identification of BOIP, a novel cDNA highly expressed during spermatogenesis that encodes a protein interacting with the orange domain of the hairy-related transcription factor HRT1/Hey1 in Xenopus and mouse

Reginald Van Wayenbergh
Abstract Hairy-related transcription factor (HRT/Hey) genes encode a novel subfamily of basic helix-loop-helix (bHLH) transcription factors related to the Drosophila hairy and Enhancer-of-split (E(spl)) and the mammalian HES proteins that function as downstream mediators of Notch signaling. Using the yeast two-hybrid approach, a previously uncharacterized protein was identified in Xenopus that interacts with XHRT1 (originally referred to as bc8), one member of the HRT/Hey subclass. This protein is evolutionarily conserved in chordates. It binds to sequences adjacent to the bHLH domain of XHRT1 known as the Orange domain and has been named bc8 Orange interacting protein (BOIP). BOIP shows a rather uniform subcellular localization and is recruited to the nucleus upon binding to XHRT1. In Xenopus, XBOIP mRNA is detected by RNase protection analysis throughout embryogenesis. In the adult, the strongest expression is detected in testis. In the mouse, high levels of BOIP mRNA are also found in adult testis. No expression is detected in the embryo and in any of the other adult organs tested. In situ hybridization revealed that BOIP transcripts were detected almost exclusively in round spermatids and that this expression overlaps with that of Hey1 (HRT1), which is expressed throughout spermatogenesis. In view of the importance of the Orange domain for HRT/Hey function, the newly identified BOIP proteins may serve as regulators specifically of HRT1/Hey1 activity. Developmental Dynamics 228:716,725, 2003. 2003 Wiley-Liss, Inc. [source]

LRRN6A/LERN1 (leucine-rich repeat neuronal protein 1), a novel gene with enriched expression in limbic system and neocortex

Laura Carim-Todd
Abstract Human chromosome 15q24-q26 is a very complex genomic region containing several blocks of segmental duplications to which susceptibility to anxiety disorders has been mapped (Gratacos et al., 2001, Cell, 106, 367,379; Pujana et al., 2001, Genome Res., 11, 98,111). Through an in silico gene content analysis of the 15q24-q26 region we have identifie1d a novel gene, LRRN6A (leucine-rich repeat neuronal 6A), and confirmed its location to the centromeric end of this complex region. LRRN6A encodes a transmembrane leucine-rich repeat protein, LERN1 (leucine-rich repeat neuronal protein 1), with similarity to proteins involved in axonal guidance and migration, nervous system development and regeneration processes. The identification of homologous genes to LRRN6A on chromosomes 9 and 19 and the orthologous genes in the mouse genome and other organisms suggests that LERN proteins constitute a novel subfamily of LRR (leucine-rich repeat)-containing proteins. The LRRN6A expression pattern is specific to the central nervous system, highly and broadly expressed during early stages of development and gradually restricted to forebrain structures as development proceeds. Expression level in adulthood is lower in general but remains stable and significantly enriched in the limbic system and cerebral cortex. Taken together, the confirmation of LRRN6A's expression profile, its predicted protein structure and its similarity to nervous system-expressed LRR proteins with essential roles in nervous system development and maintenance suggest that LRRN6A is a novel gene of relevance in the molecular and cellular neurobiology of vertebrates. [source]

The ylo-1 gene encodes an aldehyde dehydrogenase responsible for the last reaction in the Neurospora carotenoid pathway

Alejandro F. Estrada
Summary The accumulation of the apocarotenoid neurosporaxanthin and its carotene precursors explains the orange pigmentation of the Neurospora surface cultures. Neurosporaxanthin biosynthesis requires the activity of the albino gene products (AL-1, AL-2 and AL-3), which yield the precursor torulene. Recently, we identified the carotenoid oxygenase CAO-2, which cleaves torulene to produce the aldehyde ,-apo-4,-carotenal. This revealed a last missing step in Neurospora carotenogenesis, namely the oxidation of the CAO-2 product to the corresponding acid neurosporaxanthin. The mutant ylo-1, which exhibits a yellow colour, lacks neurosporaxanthin and accumulates several carotenes, but its biochemical basis is unknown. Based on available genetic data, we identified ylo-1 in the Neurospora genome, which encodes an enzyme representing a novel subfamily of aldehyde dehydrogenases, and demonstrated that it is responsible for the yellow phenotype, by sequencing and complementation of mutant alleles. In contrast to the precedent structural genes in the carotenoid pathway, light does not induce the synthesis of ylo-1 mRNA. In vitro incubation of purified YLO-1 protein with ,-apo-4,-carotenal produced neurosporaxanthin through the oxidation of the terminal aldehyde into a carboxyl group. We conclude that YLO-1 completes the set of enzymes needed for the synthesis of this major Neurospora pigment. [source]