Novel Hosts (novel + hosts)

Distribution by Scientific Domains

Selected Abstracts

Novel insect-tree associations resulting from accidental and intentional biological ,invasions': a meta-analysis of effects on insect fitness

Coralie Bertheau
Ecology Letters (2010) 13: 506,515 Abstract The translocation of species beyond their native range is a major threat to biodiversity. Invasions by tree-feeding insects attacking native trees and the colonization of introduced trees by native insects result in new insect,tree relationships. To date there is uncertainty about the key factors that influence the outcome of these novel interactions. We report the results of a meta-analysis of 346 pairwise comparisons of forest insect fitness on novel and ancient host tree species from 31 publications. Host specificity of insects and phylogenetic relatedness between ancient and novel host trees emerged as key factors influencing insect fitness. Overall, fitness was significantly lower on novel host species than on ancient hosts. However, in some cases, fitness increased on novel hosts, mainly in polyphagous insects or when close relatives of ancient host trees were colonized. Our synthesis enables greatly improved impact prediction and risk assessment of biological invasions. [source]

Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps?

Peter Van Baarlen
Abstract It is common knowledge that pathogenic viruses can change hosts, with avian influenza, the HIV, and the causal agent of variant Creutzfeldt,Jacob encephalitis as well-known examples. Less well known, however, is that host jumps also occur with more complex pathogenic microorganisms such as bacteria and fungi. In extreme cases, these host jumps even cross kingdom of life barriers. A number of requirements need to be met to enable a microorganism to cross such kingdom barriers. Potential cross-kingdom pathogenic microorganisms must be able to come into close and frequent contact with potential hosts, and must be able to overcome or evade host defences. Reproduction on, in, or near the new host will ensure the transmission or release of successful genotypes. An unexpectedly high number of cross-kingdom host shifts of bacterial and fungal pathogens are described in the literature. Interestingly, the molecular mechanisms underlying these shifts show commonalities. The evolution of pathogenicity towards novel hosts may be based on traits that were originally developed to ensure survival in the microorganism's original habitat, including former hosts. [source]

Oviposition and feeding preference of Acrolepiopsis assectella Zell. (Lep., Acrolepiidae)

J. Allison
Abstract:, The leek moth, Acrolepiopsisassectella (Zell.), is a recently discovered exotic species in eastern Ontario and western Quebec. This Allium spp. (Asparagales, Alliaceae) specialist can cause up to 40% crop damage. A no-choice experiment was used to determine the relationship between oviposition behaviour and larval survival of the leek moth as the phylogenetic distance from the preferred host Allium ampeloprasum var. porrum L. increased. Results indicate that oviposition preference and larval survival of the leek moth declined as the phylogenetic distance from the preferred host increased. These results support the conclusion that the leek moth is a specialist feeder on closely related Allium spp. although the strength of this preference may decline as the motivation to oviposit increases. This may indicate that the leek moth is able to use closely related novel hosts as temporary refuges if the preferred host plant is unavailable. [source]

Resource specialization in a phytophagous insect: no evidence for genetically based performance trade-offs across hosts in the field or laboratory

Abstract We present a field test of the genetically based performance trade-off hypothesis for resource specialization in a population of the moth Rothschildia lebeau whose larvae primarily feed on three host plant species. Pairwise correlations between growth vs. growth, survival vs. survival and growth vs. survival across the different hosts were calculated, using families (sibships) as the units of analysis. Of 15 pairwise correlations, 14 were positive, 5 significantly so and none were negative. The same pattern was found using complementary growth and survival data from the laboratory. Overall, we found no evidence of negative genetic correlations in cross-host performance that would be indicative of performance trade-offs in this population. Rather, variation among families in performance appears to reflect ,general vigour' whereby families that perform well on one host perform well across multiple hosts. We discuss the implications of positive genetic correlations in cross-host performance in terms of the ecology and evolution of host range. We argue that this genetic architecture facilitates colonization of novel hosts and recolonization of historical hosts, therefore contributing to host shifts, host range expansions, biological invasions and introductions, and host ranges that are regionally broad but locally narrow. [source]

Genetic architecture for normal and novel host-plant use in two local populations of the herbivorous ladybird beetle, Epilachna pustulosa

H. Ueno
Abstract Trade-offs in host-plant use are thought to promote the evolution of host specificity. However, usually either positive or no genetic correlations have been found. Whereas factors enhancing variation in overall viability have been claimed to mask negative genetic correlations, alternative hypotheses emphasize the sequential changes in genetic correlation in the course of host-range evolution. In this study, the genetic architectures of performances on different hosts were compared in two populations of the herbivorous ladybird beetle, Epilachna pustulosa, using three host plants, one being normal for both, one novel for only one population, and the other novel for both populations. The genetic correlations between larval periods on normal hosts were significantly positive whereas those between normal and novel hosts were not different from zero. There was no evidence for reduced genetic variation on the normal host-plants. These results suggest that the host-range is not restricted by the antagonistic genetic associations among exploitation abilities on different plant species, but rather that selection of different host-plants may improve the coordination between genes responsible for the use of different plants. [source]

Preference,performance relationship and influence of plant relatedness on host use by Pityogenes chalcographus L.

Coralie Bertheau
Abstract 1Pityogenes chalcographus L. (Coleoptera: Scolytinae) causes damage in European coniferous forests, primarily on Picea abies L. Karst., but is also recorded on other native and exotic Pinaceae species. Estimating the adequacy between adult preference and larval performance of this beetle among its host-range, as well as the influence of plant taxonomic relatedness on these parameters, would provide useful information on the beetle's ability to shift onto novel hosts. 2Choice and no-choice assays were conducted under laboratory conditions. Adult preference and larval performance parameters among two native (Pinus sylvestris L. and Picea abies) and three exotic north American [Pinus contorta Dougl., Picea sitchensis (Bong.) Carr. and Pseudotsuga menziesii Mirbel (Franco)] conifer species were measured. 3Pityogenes chalcographus exhibited a significant positive relationship between preference and performance. Picea abies was both the preferred and the most suitable host species for larval development. The closest relative, P. sitchensis, was the second best choice in terms of preference and performance. Pseudotsuga menziesii occupied an intermediate position for both beetle preference and performance, and Pinus spp. were the least suitable hosts for beetle development. 4Adult preference and larval performance ranking among hosts provides little support to the plant taxonomic relatedness hypothesis. Taxonomic relatedness could play a role on the diet breadth, although only at a limited scale, within the genus Picea. At higher taxonomic levels, other factors such as bark thickness might be decisive. [source]

Genetic continuity of brood-parasitic indigobird species

Abstract Speciation in brood-parasitic indigobirds (genus Vidua) is a consequence of behavioural imprinting in both males and females. Mimicry of host song by males and host fidelity in female egg laying result in reproductive isolation of indigobirds associated with a given host species. Colonization of new hosts and subsequent speciation require that females occasionally lay eggs in the nests of novel hosts but the same behaviour may lead to hybridization when females parasitize hosts already associated with other indigobird species. Thus, retained ancestral polymorphism and ongoing hybridization are two alternative explanations for the limited genetic differentiation among indigobird species. We tested for genetic continuity of indigobird species using mitochondrial sequences and nuclear microsatellite data. Within West Africa and southern Africa, allopatric populations of the same species are generally more similar to each other than to sympatric populations of different species. Likewise, a larger proportion of genetic variation is explained by differences between species than by differences between locations in alternative hierarchical amovas, suggesting that the rate of hybridization is not high enough to homogenize sympatric populations of different species or prevent genetic differentiation between species. Broad sharing of genetic polymorphisms among species, however, suggests that some indigobird species trace to multiple host colonization events in space and time, each contributing to the formation of a single interbreeding population bound together by songs acquired from the host species. [source]