Non-native Range (non-native + range)

Distribution by Scientific Domains


Selected Abstracts


Plant,soil biota interactions and spatial distribution of black cherry in its native and invasive ranges

ECOLOGY LETTERS, Issue 12 2003
Kurt O. Reinhart
Abstract One explanation for the higher abundance of invasive species in their non-native than native ranges is the escape from natural enemies. But there are few experimental studies comparing the parallel impact of enemies (or competitors and mutualists) on a plant species in its native and invaded ranges, and release from soil pathogens has been rarely investigated. Here we present evidence showing that the invasion of black cherry (Prunus serotina) into north-western Europe is facilitated by the soil community. In the native range in the USA, the soil community that develops near black cherry inhibits the establishment of neighbouring conspecifics and reduces seedling performance in the greenhouse. In contrast, in the non-native range, black cherry readily establishes in close proximity to conspecifics, and the soil community enhances the growth of its seedlings. Understanding the effects of soil organisms on plant abundance will improve our ability to predict and counteract plant invasions. [source]


Plant,soil feedback induces shifts in biomass allocation in the invasive plant Chromolaena odorata

JOURNAL OF ECOLOGY, Issue 6 2009
Mariska Te Beest
Summary 1. ,Soil communities and their interactions with plants may play a major role in determining the success of invasive species. However, rigorous investigations of this idea using cross-continental comparisons, including native and invasive plant populations, are still scarce. 2. ,We investigated if interactions with the soil community affect the growth and biomass allocation of the (sub)tropical invasive shrub Chromolaena odorata. We performed a cross-continental comparison with both native and non-native-range soil and native and non-native-range plant populations in two glasshouse experiments. 3. ,Results are interpreted in the light of three prominent hypotheses that explain the dominance of invasive plants in the non-native range: the enemy release hypothesis, the evolution of increased competitive ability hypothesis and the accumulation of local pathogens hypothesis. 4. ,Our results show that C. odorata performed significantly better when grown in soil pre-cultured by a plant species other than C. odorata. Soil communities from the native and non-native ranges did not differ in their effect on C. odorata performance. However, soil origin had a significant effect on plant allocation responses. 5. ,Non-native C. odorata plants increased relative allocation to stem biomass and height growth when confronted with soil communities from the non-native range. This is a plastic response that may allow species to be more successful when competing for light. This response differed between native and non-native-range populations, suggesting that selection may have taken place during the process of invasion. Whether this plastic response to soil organisms will indeed select for increased competitive ability needs further study. 6. ,The native grass Panicum maximum did not perform worse when grown in soil pre-cultured by C. odorata. Therefore, our results did not support the accumulation of local pathogens hypothesis. 7. ,Synthesis. Non-native C. odorata did not show release from soil-borne enemies compared to its native range. However, non-native plants responded to soil biota from the non-native range by enhanced allocation in stem biomass and height growth. This response can affect the competitive balance between native and invasive species. The evolutionary potential of this soil biota-induced change in plant biomass allocation needs further study. [source]


An explicit test for the contribution of environmental maternal effects to rapid clinal differentiation in an invasive plant

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 5 2009
A. MONTY
Abstract Population differentiation of alien invasive plants within their non-native range has received increasingly more attention. Common gardens are typically used to assess the levels of genotypic differentiation among populations. However, in such experiments, environmental maternal effects can influence phenotypic variation among individuals if seed sources are collected from field populations under variable environmental regimes. In the present study, we investigated the causes of an altitudinal cline in an invasive plant. Seeds were collected from Senecio inaequidens (Asteraceae) populations along an altitudinal gradient in southern France. In addition, seeds from the same populations were generated by intra-population crossings in a climatic chamber. The two seed lots were grown in a common garden in Central Belgium to identify any evidence of environmentally induced maternal effects and/or an altitudinal cline in a suite of life-history traits. Results failed to detect any environmental maternal effects. However, an altitudinal cline in plant height and above-ground biomass was found to be independent of the maternal environment. [source]


Ontogenetic variability in external morphology of bighead goby Neogobius kessleri from the Middle Danube, Slovakia

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 4 2005
V. Ková
Summary Over the last decade, four species of goby have invaded the Middle Danube area, and all of them have spread rapidly. In the early 1990s, bighead goby Neogobius kessleri appeared in the Middle Danube, where it now seems to thrive. Relatively little is known of the environmental biology and ontogeny of this species in its native and non-native ranges. In this paper, preliminary results on the external morphology of bighead goby from the Slovak stretch of the Danube are presented within an ontogenetic context. Patterns of relative growth with no apparent changes at small size suggest direct development in bighead goby, although not as profoundly direct as observed in round goby N. melanostomus. Differences in life history between these two closely related species may have important implications for their success in novel environments, favouring the latter in short term (several years) and the former in long term (decades and longer) perspective. [source]


Plant,soil feedback induces shifts in biomass allocation in the invasive plant Chromolaena odorata

JOURNAL OF ECOLOGY, Issue 6 2009
Mariska Te Beest
Summary 1. ,Soil communities and their interactions with plants may play a major role in determining the success of invasive species. However, rigorous investigations of this idea using cross-continental comparisons, including native and invasive plant populations, are still scarce. 2. ,We investigated if interactions with the soil community affect the growth and biomass allocation of the (sub)tropical invasive shrub Chromolaena odorata. We performed a cross-continental comparison with both native and non-native-range soil and native and non-native-range plant populations in two glasshouse experiments. 3. ,Results are interpreted in the light of three prominent hypotheses that explain the dominance of invasive plants in the non-native range: the enemy release hypothesis, the evolution of increased competitive ability hypothesis and the accumulation of local pathogens hypothesis. 4. ,Our results show that C. odorata performed significantly better when grown in soil pre-cultured by a plant species other than C. odorata. Soil communities from the native and non-native ranges did not differ in their effect on C. odorata performance. However, soil origin had a significant effect on plant allocation responses. 5. ,Non-native C. odorata plants increased relative allocation to stem biomass and height growth when confronted with soil communities from the non-native range. This is a plastic response that may allow species to be more successful when competing for light. This response differed between native and non-native-range populations, suggesting that selection may have taken place during the process of invasion. Whether this plastic response to soil organisms will indeed select for increased competitive ability needs further study. 6. ,The native grass Panicum maximum did not perform worse when grown in soil pre-cultured by C. odorata. Therefore, our results did not support the accumulation of local pathogens hypothesis. 7. ,Synthesis. Non-native C. odorata did not show release from soil-borne enemies compared to its native range. However, non-native plants responded to soil biota from the non-native range by enhanced allocation in stem biomass and height growth. This response can affect the competitive balance between native and invasive species. The evolutionary potential of this soil biota-induced change in plant biomass allocation needs further study. [source]


Role of sexual reproduction in the spread of an invasive clonal plant Solidago canadensis revealed using intersimple sequence repeat markers

PLANT SPECIES BIOLOGY, Issue 1 2006
MEI DONG
Abstract Invasive species, second only to habitat loss as a cause of biodiversity loss, pose serious threats to native biodiversity and ecosystems. Little is known about the mechanisms that some exotic plants use to become invasive in their non-native ranges. Solidago canadensis, native to North America, was intentionally introduced to many countries where it has become an invasive plant. To understand the roles that reproductive mode plays in successful invasion of exotic plants, and the relative importance of sexual reproduction and clonal growth, the genetic diversity and clonal structure of two S. canadensis populations from Shanghai, China were investigated using intersimple sequence repeats. Samples were collected in a grid pattern with intervals of 2 m among adjacent individuals within the studied area (approximately 30 m × 30 m) for each population. Results showed that the percentages of polymorphic loci for the two populations were 97.9% and 96.5% and clonal diversity measured using the Simpson Diversity Index was 1.00 for both populations. No identical genotypes were found among the analyzed samples. It is suggested from this study that sexual reproduction facilitates the establishment of new S. canadensis populations, whereas clonal expansion maintains and enlarges the established populations. Thus, limiting sexual reproduction of S. canadensis may effectively control the invasion of this species. [source]