Nonirradiated Control (nonirradiated + control)

Distribution by Scientific Domains


Selected Abstracts


Effect of Gamma-Irradiated Red Pepper Powder on the Chemical and Volatile Characteristics of Kakdugi, a Korean Traditional Fermented Radish Kimchi

JOURNAL OF FOOD SCIENCE, Issue 7 2005
Jeung Hee Lee
ABSTRACT The chemical and volatile characteristics of kakdugi batches prepared with irradiated red pepper powders were determined during fermentation for 7 wk at 5 C. Acidities of kakdugies with irradiated red pepper powder (3, 5, and 7 kGy) were lower than that of kakdugi with nonirradiated control at 3 wk of fermentation, which indicated that the irradiated red pepper powder might delay the initial fermentation. Pungency and red color caused by capsanoids and capsanthin, respectively, were not altered by irradiated red pepper powder, whereas the fermentation decreased the capsanoid content. The headspace volatile compounds extracted by solid-phase microextraction, except 2-tricanone, were not significantly different in fresh made kakdugies with red pepper powder irradiated at dosed of 0, 3, 5, and 7 kGy; however, as fermentation progressed, the composition of volatiles was changed. A FOX 3000 electronic nose separated the odor of kakdugies with red pepper powder irradiated at 0, 3, 5, and 7 kGy into 4 different groups, and the odor patterns developed differently during fermentation. [source]


Effect of Gamma-irradiation on Color, Pungency, and Volatiles of Korean Red Pepper Powder

JOURNAL OF FOOD SCIENCE, Issue 8 2004
J.H. Lee
ABSTRACT: Effect of gamma-irradiation on color, pungency, and volatiles of Korean red pepper powder (Capsicum annuum L.) was investigated. Red pepper powder, vacuum-packaged in a polyethylene/polypropylene bag, was gamma-irradiated up to 7 kGy. An irradiation dose of 7 kGy reduced the population of mesophilic bacteria and fungi effectively without affecting major quality factors. Pungency of irradiated red pepper powder was not changed based on the amount of capsanoids by high-performance liquid chromatography (HPLC) and the Scoville sensory score. The red color of irradiated pepper powder was not significantly different from that of the control, judged from the capsanthin content by HPLC and color assessment using spectrophotpmetric (American Spice Trade Assn. units) and colorimetric measurements (Hunter a values). Further, the sensory evaluation showed no significant difference in pungent odor and off-odor between nonirradiated control and irradiated red pepper powder. However, when headspace volatiles of gamma-irradiated red pepper powder were evaluated by gas chromatography/ mass spectrometry with solid-phase microextraction and electronic nose with metal oxide sensors, the profiles of odor were classified into irradiated dose levels of 0, 3, 5, and 7 kGy by principal component analysis and multivariate analysis of variance. Such a difference of odor might result from the disappearance of some volatiles, such as hexanoic acid and tetramethyl-pyrazine, and the appearance of 1,3-di-tert-butylbenzene during irradiation. Moreover, it appears that the irradiation of packaging material induced a formation of 1,3-di-tertbutylbenzene, which migrated into the red pepper powder. [source]


Effects of Light Exposure and Use of Intraocular Lens on Retinal Pigment Epithelial Cells In Vitro

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2009
Sheng Hui
To investigate the effect of a blue light-filtering intraocular lens (IOL) and a UV-absorbing IOL on light-induced damage to retinal pigment epithelial (RPE) cells laden with the lipofuscin fluorophore N -retinylidene- N -retinylethanolamine (A2E), A2E-laden RPE cells were exposed to white light which was filtered by either a blue light-filtering IOL or a UV-absorbing IOL. After 30 min of illumination the cell viability and the level of reactive oxygen species (ROS), free glutathione (GSH), vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF) were determined. In the absence of an IOL, the white light exposure decreased cell viability to 37.2% of the nonirradiated control. The UV-absorbing IOL tended to reduce light-induced cell death; however, the decrease was not significant. The blue light-filtering IOL significantly attenuated light-induced cell damage, increasing cell viability to 79.5% of the nonirradiated control. The presence of the blue light-filtering IOL significantly increased GSH and PEDF levels, and decreased ROS and VEGF levels. This study suggests that a blue light-filtering IOL may be more protective against A2E-induced light damage and inhibit more light-induced ROS and VEGF production than a conventional UV-absorbing IOL. [source]


Studies of thioguanine-resistant lymphocytes induced by in vivo irradiation of mice

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 5 2008
Irene M. Jones
Abstract The frequency of Hprt -deficient lymphocytes in mice after in vivo , irradiation, has been found to vary as a function of time elapsed after exposure and irradiation dose. The frequency of mutant lymphocytes in spleen was determined using an in vitro, clonogenic assay for thioguanine-resistant T-lymphocytes. Mice were exposed to single doses of 0,400 cGy from cesium-137 or to eight daily doses of 50 cGy. The time to maximum-induced mutant frequency was 3 weeks. The dose response was strikingly curvilinear at 3,5 weeks after irradiation, but less precisely defined for 10,53 weeks after exposure, being fit by either linear or quadratic dependence. Three weeks after eight daily 50 cGy exposures, mutant frequency was elevated above controls and mice exposed to 50 cGy (which were not distinct from the nonirradiated controls), but only 17% in that of mice given a single 400 cGy fraction. This fractionation effect and the curvilinearity of the early dose,response curve suggested that saturation of repair increased the yield of mutations at higher acute doses. The decline of spleen mutant frequency in mice observed between 5 and 10 weeks after irradiation may reflect selection against some mutants. The marked variation of mutant frequency, as a function of time after irradiation and of dose rate, emphasize the need to evaluate these variables carefully and consistently in future studies. Environ. Mol. Mutagen., 2008. 2008 Wiley-Liss, Inc. [source]


Long-term Changes in Postnatal Susceptibility to Pilocarpine-induced Seizures in Rats Exposed to Gamma Radiation at Different Stages of Prenatal Development

EPILEPSIA, Issue 10 2003
Zuzanna Setkowicz
Summary:,Purpose: To determine whether brains irradiated at different stages of prenatal development also have different postnatal susceptibility to seizures evoked by pilocarpine. Methods: Pregnant Wistar rats were exposed to a single 1.0-Gy dose of gamma rays on gestation days 13, 15, 17, or 19 (E13, E15, E17, and E19, respectively). On postnatal day 60, their offspring received i.p. pilocarpine injections to evoke status epilepticus. Behavior of the animals was observed continuously for 6 h after the injection, and motor manifestations of seizure activity were rated, and survival times recorded. After 7-day survival, the animals were killed, and their brains were weighed. Results: The average brain weight of animals exposed to irradiation at earlier prenatal stages (E13 or E15) was significantly lower than that after irradiation on E17 or E19. However, effects of the irradiation on the susceptibility to pilocarpine-induced seizures were quite opposite. The intensity of status epilepticus evoked in rats irradiated on E13 or E15 was significantly lower than that in nonirradiated controls or in those irradiated on E17 or E19. Moreover, after irradiation on E13 or E15, survival of the animals was significantly higher in relation not only to other irradiated groups but also to the controls. Conclusions: The results suggest than the extent of neuronal deficit, even if relatively greater, cannot always lead to higher susceptibility of the dysplastic brain to seizures. Functional consequences of the deficit, even if its magnitude is relatively smaller but involving specific brain areas, appear to be critical for the epileptogenesis. [source]


Bond strength of AH Plus and Epiphany sealers on root dentine irradiated with 980 nm diode laser

INTERNATIONAL ENDODONTIC JOURNAL, Issue 9 2008
E. Alfredo
Abstract Aim, To evaluate the bond strength of AH Plus and Epiphany sealers to human root canal dentine irradiated with a 980 nm diode laser at different power and frequency parameters, using the push-out test. Methodology, Sixty canine roots were sectioned below the cementoenamel junction to provide 4-mm-thick dentine discs that had their root canals prepared with a tapered bur and irrigated with sodium hypochlorite, ethylenediaminetetraacetic acid and distilled water. The specimens were assigned to five groups (n = 12): one control (no laser) and four experimental groups that were submitted to 980 nm diode laser irradiation at different power (1.5 and 3.0 W) and frequency (continuous wave and 100 Hz) parameters. Half of specimens in each group had their canals filled with AH Plus sealer and half with Epiphany. The push-out test was performed and data (MPa) were analysed statistically by anova and Tukey's test (P < 0.05). The specimens were split longitudinally and examined under SEM to assess the failure modes after sealer displacement. Results, The specimens irradiated with the diode laser and filled with AH Plus had significantly higher bond strength values (8.69 2.44) than those irradiated and filled with Epiphany (3.28 1.58) and the nonirradiated controls (3.86 0.60). The specimens filled with Epiphany did not differ significantly to each other or to the control (1.75 0.69). There was a predominance of adhesive failures at Epiphany,dentine interface (77%) and mixed failures at AH Plus,dentine interface (67%). Conclusions, The 980 nm diode laser irradiation of root canal dentine increased the bond strength of AH Plus sealer, but did not affect the adhesion of Epiphany sealer. [source]