Normal Lung (normal + lung)

Distribution by Scientific Domains

Terms modified by Normal Lung

  • normal lung function
  • normal lung tissue

  • Selected Abstracts


    Evaluation of mutant frequencies of chemically induced tumors and normal tissues in ,/cII transgenic mice

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 1 2005
    Jon C. Mirsalis
    Abstract Genomic instability has been implicated as an important component in tumor progression. Evaluation of mutant frequencies (MFs) in tumors of transgenic mice containing nontranscribed marker genes should be useful for quantitating mutation rates in tumors as the physiologically inactive transgene provides neither a positive nor a negative selective pressure on the tumor. We have conducted long-term carcinogenicity studies in ,/cII transgenic B6C3F1 mice using a variety of genotoxic and nongenotoxic test agents and have evaluated the mutant frequencies in both tumors and normal tissues from these animals. Mice were administered diethylnitrosamine (DEN) as three intraperitoneal injections of 15 mg/kg; phenobarbital (PB) or oxazepam (OXP) provided ad libitum at 0.1% or 0.25% in the diet, respectively; DEN initiation plus PB in the diet; or urethane (UTH) provided ad libitum at 0.2% in the drinking water. Normal tissues and tumors were isolated at various times over a 2-year period and half of each tissue/tumor was evaluated histopathologically and the other half was evaluated for MF in the cII transgene. Approximately 20 mutants from each of 166 individual tissues (tumor and nontumor) were sequenced to determine whether increases in MF represented unique mutations or were due to clonal expansion. UTH produced significant increases in MF in normal liver and lung. DEN either with or without PB promotion produced significant increases in MF in liver and correction of MF for clonality produced little change in the overall MF in these groups. PB produced a twofold increase in liver MF over controls after 27 weeks of treatment, but a similar increase was not observed with longer dosing times; at later time points, the MF in the PB groups was lower than that of the control group, suggesting that PB is not producing direct DNA damage in the liver. OXP failed to produce an increase in MF over controls, even after 78 weeks of treatment. Selected cases of genomic instability were observed in tumors from all treatments except OXP, with individual liver tumors showing very high MF values even after clonal correction. One rare and interesting finding was noted in a single mouse treated with UTH, where a mammary metastasis had an MF approximately 10-fold greater than the parent tumor, with 75% of the mutations independent, providing strong evidence of genomic instability. There was no clear correlation between tumor phenotype and MF except that pulmonary adenomas generally had higher MFs than normal lung in both genotoxic and nongenotoxic treatment groups. Likewise, there was no correlation between tumor size and MF after correction for clonality. The results presented here demonstrate that individual tumors can show significant genomic instability, with very significant increases in MF that are not attributed to clonal expansion of a single mutant cell. Environ. Mol. Mutagen., 2005. © 2004 Wiley-Liss, Inc. [source]


    FGFR4 Gly388Arg polymorphism may affect the clinical stage of patients with lung cancer by modulating the transcriptional profile of normal lung

    INTERNATIONAL JOURNAL OF CANCER, Issue 12 2009
    Felicia S. Falvella
    Abstract The association of the fibroblast growth factor receptor 4 (FGFR4) Gly388Arg polymorphism with clinical stage and overall survival in a series of 541 Italian lung adenocarcinoma (ADCA) patients indicated a significantly decreased survival in patients carrying the rare Arg388 allele as compared to that in Gly/Gly homozygous patients [hazard ratio (HR) = 1.5; 95% confidence interval (CI) 1.1,1.9], with the decrease related to the association of the same polymorphism with clinical stage (HR = 1.8, 95% CI 1.3,2.6). By contrast, no significant association was detected in small series of either Norwegian lung ADCA patients or Italian lung squamous cell carcinoma (SQCC) patients. Single nucleotide polymorphisms of known FGFR4 ligands expressed in lung (FGF9, FGF18 and FGF19) were not associated with clinical stage or survival and showed no interaction with FGFR4. Analysis of gene expression profile in normal lungs according to FGFR4 genotype indicated a specific transcript pattern associated with the allele carrier status, suggesting a functional role for the FGFR4 polymorphism already detectable in normal lung. These findings confirm the significant association of the FGFR4 Gly388Arg polymorphism with clinical stage and overall survival in an Italian lung ADCA population and demonstrate a FGFR4 genotype-dependent transcriptional profile present in normal lung tissue. © 2009 UICC [source]


    Cystic fibrosis and airway submucosal glands

    PEDIATRIC PULMONOLOGY, Issue 4 2005
    S.K. Inglis PhD
    Abstract The chronic pulmonary infections and inflammation associated with cystic fibrosis (CF) are responsible for almost all the morbidity and mortality of this disease. Our understanding of the mechanisms that underlie the very early stages of CF lung disease, that result directly from mutations in the CF gene, is relatively poor. However, the demonstration that the predominant sites of expression of the CF gene in normal lungs are the submucosal glands, together with the histological observations showing that hyperplasia of these glands and mucin occlusion of the gland ducts are the earliest signs of disease in the CF lung, suggest that malfunction of the submucosal glands may be an important factor contributing to the early pathophysiology of CF lung disease. This review describes the function of submucosal glands in normal lungs, and the way in which their function may be disrupted in CF and may thus contribute to the early stages of CF lung disease. © 2005 Wiley-Liss, Inc. [source]