NO Synthase Activity (no + synthase_activity)

Distribution by Scientific Domains

Selected Abstracts

Modulation of the cGMP signaling pathway by melatonin in pancreatic , -cells

Ina Stumpf
Abstract:, Melatonin influences the second messenger cyclic guanosine 3,,5,-monophosphate (cGMP) signaling pathway in pancreatic , -cells via a receptor-mediated mechanism. In the present study, it was determined how the regulation of cGMP concentrations by melatonin proceeds. The results provide evidence that melatonin acts via the soluble guanylate cyclase (sGC), as molecular investigations demonstrated that long-term incubation with melatonin significantly reduced the expression levels of the sGC mRNA in rat insulinoma , -cells (INS1) cells, whereas mRNA expression of membrane guanylate cyclases was unaffected. Incubation with melatonin abolished the S-nitrosoacetyl penicillamine-induced increase of cGMP concentrations in INS1 cells. In addition, the cGMP-inhibitory effect of melatonin was reversed by preincubation with the sGC inhibitors 1H-(1,2,4)oxadiazolo(4,3- ,)quinoxalin-1-one and 4H-8-bromo-1,2,4-oxadiazolo(3,4-d)benz(b)(1,4)oxazin-1-one. Nitric oxide (NO) production was not influenced after 1 hr of melatonin application, but was influenced after a 4 hr incubation period. Preincubation of INS1 cells with the NO synthase inhibitor NG -monomethyl- l -arginine did not abolish the cGMP-inhibitory effect of melatonin. Transcripts of cyclic nucleotide-gated (CNG) channels were significantly reduced after melatonin treatment in a dose-dependent manner, indicating the involvement of these channels in mediating the melatonin effect in INS1 cells. The results of this study demonstrate that melatonin mediates its inhibitory effect on cGMP concentrations in pancreatic , -cells by inhibiting the sGC, but does not influence NO concentration or NO synthase activity in short-term incubation experiments. In addition, it was demonstrated that melatonin is involved in modulation of CNG channel mRNA. [source]

Effect of exercise training on endothelium-derived nitric oxide function in humans

Daniel J. Green
Vascular endothelial function is essential for maintenance of health of the vessel wall and for vasomotor control in both conduit and resistance vessels. These functions are due to the production of numerous autacoids, of which nitric oxide (NO) has been the most widely studied. Exercise training has been shown, in many animal and human studies, to augment endothelial, NO-dependent vasodilatation in both large and small vessels. The extent of the improvement in humans depends upon the muscle mass subjected to training; with forearm exercise, changes are restricted to the forearm vessels while lower body training can induce generalized benefit. Increased NO bioactivity with exercise training has been readily and consistently demonstrated in subjects with cardiovascular disease and risk factors, in whom antecedent endothelial dysfunction exists. These conditions may all be associated with increased oxygen free radicals which impact on NO synthase activity and with which NO reacts; repeated exercise and shear stress stimulation of NO bioactivity redresses this radical imbalance, hence leading to greater potential for autacoid bioavailability. Recent human studies also indicate that exercise training may improve endothelial function by up-regulating eNOS protein expression and phosphorylation. While improvement in NO vasodilator function has been less frequently found in healthy subjects, a higher level of training may lead to improvement. Regarding time course, studies indicate that short-term training increases NO bioactivity, which acts to homeostatically regulate the shear stress associated with exercise. Whilst the increase in NO bioactivity dissipates within weeks of training cessation, studies also indicate that if exercise is maintained, the short-term functional adaptation is succeeded by NO-dependent structural changes, leading to arterial remodelling and structural normalization of shear. Given the strong prognostic links between vascular structure, function and cardiovascular events, the implications of these findings are obvious, yet many unanswered questions remain, not only concerning the mechanisms responsible for NO bioactivity, the nature of the cellular effect and relevance of other autacoids, but also such practical questions as the optimal intensity, modality and volume of exercise training required in different populations. [source]

Activity of nitric oxide synthase in mature and immature human spermatozoa

ANDROLOGIA, Issue 2 2010
C. Roessner
Summary Nitric oxide (NO) is known to be involved in multiple signal transduction pathways of male germ cells, including sperm capacitation. In somatic cells, NO production was found to be part of apoptosis signalling. The aim of our study was to further clarify the role of NO in spermatozoa by investigation of NO synthase activity with regard to sperm maturity and sperm apoptosis signalling. Semen specimens from 19 healthy donors were subjected to density gradient centrifugation to separate the predominantly mature and immature sperm fraction. NO synthase activity was evaluated using diaminofluoresceine-2-diacetate by FACS. Apoptosis signalling was monitored by flowcytometric analyses of caspase-3 (CP3) and integrity of the transmembrane mitochondrial potential (TMP). TUNEL assay was used to detect DNA fragmentations. Maturity of human spermatozoa was associated with increased NO synthase activity and inactivated apoptosis signalling (lower levels of disrupted TMP, active CP3 and DNA fragmentations, P < 0.05). Activation of apoptosis signalling was significantly negatively correlated to NO production, indicating a rather anti-apoptotic effect of NO. This might underline the recently proposed role of NO in physiological sperm signal transduction, e.g. during capacitation. [source]