NO Scavenger (no + scavenger)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


A 4-trifluoromethyl derivative of salicylate, triflusal, stimulates nitric oxide production by human neutrophils: role in platelet function

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 9 2000
De Miguel
Background The thrombotic process is a multicellular phenomenon in which not only platelets but also neutrophils are involved. Recent in vitro studies performed in our laboratory have demonstrated that triflusal, a 4-trifluoromethyl derivative of salicylate, reduced platelet aggregation not only by inhibiting thromboxane A2 production but also by stimulating nitric oxide (NO) generation by neutrophils. The aim of the present study was to evaluate whether oral treatment of healthy volunteers with triflusal could modify the ability of their neutrophils to produce NO and to test the role of the NO released by neutrophils in the modulation of ADP-induced platelet aggregation and ,-granule secretion. Methods The study was performed in 12 healthy volunteers who were orally treated with triflusal (600 mg day,1) for 5 days. Flow cytometric detection of platelet surface expression of P-selectin was used as a measure of the ability of platelets to release the contents of their ,-granules. Results After treatment with triflusal, there was an increase in NO production by neutrophils and an increase in endothelial nitric oxide synthase (eNOS) protein expression in neutrophils. A potentiation of the inhibition of platelet aggregation by neutrophils was reversed by incubating neutrophils with both an l -arginine antagonist, NG -nitro- l -arginine methyl ester ( l -NAME) and an NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5 tetramethylimidazoline 1-oxyl 3-oxide (C-PTIO). A slight decrease in P-selectin surface expression on platelets was found which was not modified by the presence of neutrophils and therefore by the neutrophil-derived NO. Exogenous NO released by sodium nitroprusside dose-dependently inhibited both ADP-stimulated ,-granule secretion and platelet aggregation. Therefore, platelet aggregation showed a greater sensitivity to be inhibited by exogenous NO than P-selectin expression. Conclusion Oral treatment of healthy volunteers with triflusal stimulated NO production and eNOS protein expression in their neutrophils. After triflusal treatment, the neutrophils demonstrated a higher ability to prevent ADP-induced platelet aggregation. However, the neutrophils and the endogenous NO generated by them failed to modify P-selectin expression in ADP-activated platelets. [source]


Effect of nitric oxide and NO synthase inhibition on nonquantal acetylcholine release in the rat diaphragm

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2000
M. R. Mukhtarov
Abstract After anticholinesterase treatment, the postsynaptic muscle membrane is depolarized by about 5 mV due to nonquantal release of acetylcholine (ACh) from the motor nerve terminal. This can be demonstrated by the hyperpolarization produced by the addition of curare (H-effect). The magnitude of the H-effect was decreased significantly to 3 mV when the nitric oxide (NO) donors, sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine (SNAP) were applied to the muscle, or when NO production was elevated by adding l -arginine, but not d -arginine, as a substrate. The H-effect was increased to 8,9 mV by inhibition of NO synthase by l -nitroarginine methylester ( l -NAME), or by guanylyl cyclase inhibition by methylene blue and 1H-[1,2,4]oxidiazolo[4,3-a]quinoxalin-1-one (ODQ). ODQ increased the H-effect to 7.3 ± 0.2 mV and diminished the SNP-induced decrease of the H-effect when applied together with SNP. The effects of NO donors and l -arginine were eliminated by adding reduced haemoglobin, an extracellular NO scavenger. The present results, together with earlier evidence for the presence of NO synthase in muscle fibres, indicate that nonquantal release of ACh is modulated by NO production in the postsynaptic cell. [source]


Bystander signaling between glioma cells and fibroblasts targeted with counted particles

INTERNATIONAL JOURNAL OF CANCER, Issue 1 2005
Chunlin Shao
Abstract Radiation-induced bystander effects may play an important role in cancer risks associated with environmental, occupational and medical exposures and they may also present a therapeutic opportunity to modulate the efficacy of radiotherapy. However, the mechanisms underpinning these responses between tumor and normal cells are poorly understood. Using a microbeam, we investigated interactions between T98G malignant glioma cells and AG01522 normal fibroblasts by targeting cells through their nuclei in one population, then detecting cellular responses in the other co-cultured non-irradiated population. It was found that when a fraction of cells was individually irradiated with exactly 1 or 5 helium particles (3He2+), the yield of micronuclei (MN) in the non-irradiated population was significantly increased. This increase was not related to the fraction of cells targeted or the number of particles delivered to those cells. Even when one cell was targeted with a single 3He2+, the induction of MN in the bystander non-irradiated population could be increased by 79% for AG01522 and 28% for T98G. Furthermore, studies showed that nitric oxide (NO) and reactive oxygen species (ROS) were involved in these bystander responses. Following nuclear irradiation in only 1% of cells, the NO level in the T98G population was increased by 31% and the ROS level in the AG0 population was increased by 18%. Treatment of cultures with 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (c-PTIO), an NO scavenger, abolished the bystander MN induction in non-irradiated AG01522 cells but only partially in non-irradiated T98G cells, and this could be eliminated by treatment with either DMSO or antioxidants. Our findings indicate that differential mechanisms involving NO and ROS signaling factors play a role in bystander responses generated from targeted T98G glioma and AG0 fibroblasts, respectively. These bystander interactions suggest that a mechanistic control of the bystander effect could be of benefit to radiotherapy. © 2005 Wiley-Liss, Inc. [source]


Nitric oxide regulates cell survival in purified cultures of avian retinal neurons: involvement of multiple transduction pathways

JOURNAL OF NEUROCHEMISTRY, Issue 2 2007
T. A. Mejía-García
Abstract Nitric oxide (NO) is an important signaling molecule in the CNS, regulating neuronal survival, proliferation and differentiation. Here, we explored the mechanism by which NO, produced from the NO donor S -nitroso-acetyl- d - l -penicillamine (SNAP), exerts its neuroprotective effect in purified cultures of chick retinal neurons. Cultures prepared from 8-day-old chick embryo retinas and incubated for 24 h (1 day in culture, C1) were treated or not with SNAP, incubated for a further 72 h (up to 4 days in culture, C4), fixed, and the number of cells estimated, or processed for cell death estimation, by measuring the reduction of the metabolic dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Experimental cultures were run in parallel but were re-fed with fresh medium in the absence or presence of SNAP at culture day 3 (C3), incubated for a further 24 h up to C4, then fixed or processed for the MTT assay. Previous studies showed that the re-feeding procedure promotes extensive cell death. SNAP prevented this death in a concentration- and time-dependent manner through the activation of soluble guanylate cyclase; this protection was significantly reversed by the enzyme inhibitors 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) or LY83583, and mimicked by 8-bromo cyclic guanosine 5,-phosphate (8Br-cGMP) (GMP) or 3-(5,-hydroxymethyl-2,-furyl)-1-benzyl indazole (YC-1), guanylate cyclase activators. The effect was blocked by the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). The effect of NO was also suppressed by LY294002, Wortmannin, PD98059, KN93 or H89, indicating the involvement, respectively, of phosphatidylinositol-3 kinase, extracellular-regulated kinases, calmodulin-dependent kinases and protein kinase A signaling pathways. NO also induced a significant increase of neurite outgrowth, indicative of neuronal differentiation, and blocked cell death induced by hydrogen peroxide. Cyclosporin A, an inhibitor of the mitochondrial permeability transition pore considered an important mediator of apoptosis and necrosis, as well as boc-aspartyl (OMe) fluoromethylketone (BAF), a caspase inhibitor, also blocked cell death induced by re-feeding the cultures. These findings demonstrate that NO inhibits apoptosis of retinal neurons in a cGMP/protein kinase G (PKG)-dependent way, and strengthens the notion that NO plays an important role during CNS development. [source]


Cytokinin- and auxin-induced stomatal opening is related to the change of nitric oxide levels in guard cells in broad bean

PHYSIOLOGIA PLANTARUM, Issue 3 2006
She Xiao-Ping
The relationship between cytokinin- and auxin-induced stomatal opening and nitric oxide (NO) levels in guard cells in broad bean was studied. Results indicate that cytokinins and auxins reduced the levels of NO in guard cells and induced stomatal opening in darkness. In addition, cytokinins not only reduced NO levels in guard cells caused by sodium nitroprusside (SNP) in light but also abolished NO that had been generated by dark, and then promoted the closed stomata reopening, as did NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. However, unlike cytokinins, auxins not only had incapability to reduce NO levels by SNP but also could not abolish NO having been generated by dark, so auxins could not promote the closed stomata to reopen. The above-mentioned effects of auxins were similar to that of nitric oxide synthase (enzyme commission 1.14.13.39) inhibitor NG -nitro- l -Arg-methyl ester. Hence, it is concluded that cytokinins reduced probably the levels of NO in guard cells via scavenging, and auxins reduced NO levels through restraining NO generation in all probability, and then induced stomatal opening in darkness. [source]


Nitric oxide, induced by wounding, mediates redox regulation in pelargonium leaves

PLANT BIOLOGY, Issue 5 2009
M. Arasimowicz
Abstract The subject of this study was the participation of nitric oxide (NO) in plant responses to wounding, promoted by nicking of pelargonium (Pelargonium peltatum L.) leaves. Bio-imaging with the fluorochrome 4,5-diaminofluorescein diacetate (DAF-2DA) and electrochemical in situ measurement of NO showed early (within minutes) and transient (2 h) NO generation after wounding restricted to the site of injury. In order to clarify the functional role of NO in relation to modulation of the redox balance during wounding, a pharmacological approach was used. A positive correlation was found between NO generation and regulation of the redox state. NO caused a slight restriction of post-wounded O2, production, in contrast to the periodic and marked increase in H2O2 level. The observed changes were accompanied by time-dependent inhibition of catalase (CAT) and ascorbate peroxidase (APX) activity. The effect was specific to NO, since the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5 tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) reversed the inhibition of CAT and APX, as well as temporarily enhancing H2O2 synthesis. Finally, cooperation of NO/H2O2 restricted the depletion of the low-molecular weight antioxidant pool (i.e. ascorbic acid and thiols) was positively correlated with sealing and reconstruction changes in injured pelargonium leaves (i.e. lignin formation and callose deposition). The above results clearly suggest that NO may promote restoration of wounded tissue through stabilisation of the cell redox state and stimulation of the wound scarring processes. [source]


Regulation of nitrate reductase by nitric oxide in Chinese cabbage pakchoi (Brassica chinensis L.)

PLANT CELL & ENVIRONMENT, Issue 2 2008
SHAOTING DU
ABSTRACT Nitrate reductase (NR), a committed enzyme in nitrate assimilation, involves generation of nitric oxide (NO) in plants. Here we show that the NR activity was significantly enhanced by the addition of NO donors sodium nitroprusside (SNP) and NONOate (diethylamine NONOate sodium) to the culturing solution, whereas it was decreased by NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (cPTIO). Interestingly, both NO gas and SNP directly enhanced but cPTIO inhibited the NR activities of crude enzyme extracts and purified NR enzyme. The cPTIO terminated the interaction between NR-generated NO and the NR itself. Furthermore, the NR protein content was not affected by the SNP treatment. The investigation of the partial reactions catalysed by purified NR using various electron donors and acceptors indicated that the haem and molybdenum centres in NR were the two sites activated by NO. The results suggest that the activation of NR activity by NO is regulated at the post-translational level, probably via a direct interaction mechanism. Accordingly, the concentration of nitrate both in leaves and roots was decreased after 2 weeks of cultivation with SNP. The present study identifies a new mechanism of NR regulation and nitrate assimilation, which provides important new insights into the complex regulation of N-metabolism in plants. [source]


Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening

PLANT CELL & ENVIRONMENT, Issue 10 2007
JIUPIANG YAN
ABSTRACT Although nitric oxide (NO) and reactive oxygen species (ROS) are essential signalling molecules required for mediation of abscisic acid (ABA)-induced stomatal closure, it is not known whether these molecules also mediate the ABA inhibition of stomatal opening. In this study, we investigated the role of NO and ROS in the ABA inhibition of stomatal opening in Vicia faba. ABA induced both NO and ROS synthesis, and the NO scavenger reduced the ABA inhibition of stomatal opening. Exogenous NO and hydrogen peroxide (H2O2) also inhibited stomatal opening, indicating that NO and ROS are involved in the inhibition signalling process. An inhibitor of nitric oxide synthase (NOS) reversed the ABA inhibition of stomatal opening. Either the NO scavenger or the NOS inhibitor also reversed the process in the H2O2 inhibition of stomatal opening. We found that in the ABA inhibition of stomatal opening, NO is downstream of ROS in the signalling process, and NO is synthesized by a NOS-like enzyme. [source]


NO signalling in cytokinin-induced programmed cell death

PLANT CELL & ENVIRONMENT, Issue 9 2005
FRANCESCO CARIMI
ABSTRACT Cell death can be induced by cytokinin 6-benzylaminopurine (BA) at high dosage in suspension-cultured Arabidopsis cells. Herein, we provide evidence that BA induces nitric oxide (NO) synthesis in a dose-dependent manner. A reduction in cell death can be observed when the cytokinin is supplemented with the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) or the nitric oxide synthase (NOS) inhibitors: 2-aminoethyl-isothiourea (AET) and NG. -monomethyl- l -arginine ( l -NMMA), which suggests that NO is produced via a NOS and is a signalling component of this form of programmed cell death. In BA-treated cells, mitochondrial functionality is altered via inhibition of respiration. This inhibition can be prevented by addition of either cPTIO or AET implying that NO acts at the mitochondrial level. [source]


The effect of nitric oxide on cyclooxygenase-2 (COX-2) overexpression in head and neck cancer cell lines

INTERNATIONAL JOURNAL OF CANCER, Issue 5 2003
Seok-Woo Park
Abstract The overexpression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) has been previously reported in head and neck squamous cell carcinoma (HNSCC), as well as in many cancers. We hypothesized that endogenous nitric oxide (NO) might increase the expression of COX-2 in cancer cells. Therefore, we investigated the cross-talk between NO and the prostaglandin (PG) pathways in HNSCC cell lines. We found that COX-2 and iNOS expressions were elevated simultaneously. On adding the NO donor, SNAP, the PGE2 level was increased 2,20 times due to increased COX-2 expression. This increase of COX-2 expression by SNAP or PMA (potent inducer of both iNOS and COX-2) was blocked to various degrees by NO scavengers and NOS inhibitors (L-NAME and 1400W). Also, the expression of COX-2 in resting cells was inhibited by NOS inhibitors. Moreover, COX-2 expression, induced by SNAP, was inhibited by ODQ, a soluble guanylate cyclase (sGC) inhibitor. The effect of dibutyryl-cGMP on COX-2 expression was similar to that of SNAP. These results imply that endogenous or exogenous NO activates sGC and that the resulting increase of cGMP induces a signaling that upregulates the expression of COX-2 in HNSCC cell lines. We also observed that NO increased COX-2 expression in different cancer cell lines, including cervic and gastric cancer cell lines. These findings further support the notion that NO can be associated with carcinogenesis through the upregulation of COX-2, and that NOS inhibitor may be also useful for cancer prevention. © 2003 Wiley-Liss, Inc. [source]


Glutamate receptors on myelinated spinal cord axons: II.

ANNALS OF NEUROLOGY, Issue 2 2009
GluR5 receptors
Objective Glutamate receptors, which play a major role in the physiology and pathology of central nervous system gray matter, are also involved in the pathophysiology of white matter. However, the cellular and molecular mechanisms responsible for excitotoxic damage to white matter elements are not fully understood. We explored the roles of AMPA and GluR5 kainate receptors in axonal Ca2+ deregulation. Methods Dorsal column axons were loaded with a Ca2+ indicator and imaged in vitro using confocal microscopy. Results Both AMPA and a GluR5 kainate receptor agonist increased intraaxonal Ca2+ in myelinated rat dorsal column fibers. These responses were inhibited by selective antagonists of these receptors. The GluR5-mediated Ca2+ increase was mediated by both canonical (ie, ionotropic) and noncanonical (metabotropic) signaling, dependent on a pertussis toxin,sensitive G protein/phospholipase C,dependent pathway, promoting Ca2+ release from inositol triphosphate,dependent stores. In addition, the GluR5 response was reduced by intraaxonal NO scavengers. In contrast, GluR4 AMPA receptors operated via Ca2+ -induced Ca2+ release, dependent on ryanodine receptors, and unaffected by NO scavengers. Neither pathway depended on L-type Ca2+ channels, in contrast with GluR6 kainate receptor action.1 Immunohistochemistry confirmed the presence of GluR4 and GluR5 clustered at the surface of myelinated axons; GluR5 coimmunoprecipitated with nNOS and often colocalized with neuronal nitric oxide synthase clusters on the internodal axon. Interpretation Central myelinated axons express functional AMPA and GluR5 kainate receptors, and can directly respond to glutamate receptor agonists. These glutamate receptor,dependent signaling pathways promote an increase in intraaxonal Ca2+ levels potentially contributing to axonal degeneration. Ann Neurol 2009 [source]