Arch Arteries (arch + artery)

Distribution by Scientific Domains


Selected Abstracts


Development of pharyngeal arch arteries in early mouse embryo

JOURNAL OF ANATOMY, Issue 1 2002
Tamiko Hiruma
Abstract The formation and transformation of the pharyngeal arch arteries in the mouse embryo, from 8.5 to 13 days of gestation (DG), was observed using scanning electron microscopy of vascular casts and graphic reconstruction of 1-µm serial epoxy-resin sections. Late in 8.5,9DG (12 somites), the paired ventral aortae were connected to the dorsal aortae via a loop anterior to the foregut which we call the ,primitive aortic arch', as in the chick embryo. The primitive aortic arch extended cranio-caudally to be transformed into the primitive internal carotid artery, which in turn gave rise to the primitive maxillary artery and the arteries supplying the brain. The second pharyngeal arch artery (PAA) appeared late in 9,9.5DG (16,17 somites), and the ventral aorta bent dorsolaterally to form the first PAA anterior to the first pharyngeal pouch by early in 9.5,10DG (21,23 somites). The third PAA appeared early in 9.5,10DG (21,23 somites), the fourth late in 9.5,10DG (27,29 somites), and the sixth at 10DG (31,34 somites). By 10.5DG (35,39 somites), the first and second PAAs had been transformed into other arteries, and the third, fourth and sixth PAAs had developed well, though the PAA system still exhibited bilateral symmetry. By 13DG, the right sixth PAA had disappeared, and the remaining PAAs formed an aortic-arch system that was almost of the adult type. [source]


Timeline and distribution of melanocyte precursors in the mouse heart

PIGMENT CELL & MELANOMA RESEARCH, Issue 4 2008
Flavia Carneiro Brito
Summary Apart from the well-studied melanocytes of the skin, eye and inner ear, another population has recently been described in the heart. In this study, we tracked cardiac melanoblasts using in situ hybridization with a dopachrome tautomerase (Dct) probe and Dct -LacZ transgenic mice. Large numbers of melanoblasts were found in the atrioventricular (AV) endocardial cushions at embryonic day (E) 14.5 and persisted in the AV valves into adulthood. The earliest time Dct -LacZ-positive cells were observed in the AV endocardial cushions was E12.5. Prior to that, between E10.5 and E11.5, small numbers of melanoblasts traveled between the post-otic area and third somite along the anterior and common cardinal veins and branchial arch arteries with other neural crest cells expressing CRABPI. Cardiac melanocytes were not found in the spotting mutants Ednrbs-l/s-l and Kitw-v/w-v, while large numbers were observed in transgenic mice that overexpress endothelin 3. These results indicate that cardiac melanocytes depend on the same signaling molecules known to be required for proper skin melanocyte development and may originate from the same precursor population. Cardiac melanocytes were not found in zebrafish or frog but were present in quail suggesting an association between cardiac melanocytes and four-chambered hearts. [source]


Disturbed morphogenesis of cardiac outflow tract and increased rate of aortic arch anomalies in the offspring of diabetic rats

BIRTH DEFECTS RESEARCH, Issue 12 2004
Daniël G.M. Molin
Abstract BACKGROUND Maternal diabetes (MD) is a risk factor for offspring to develop cardiovascular anomalies; this is of growing clinical concern since the number of women in childbearing age with compromised glucose homeostasis is increasing. Hyperglycemia abrogates cardiovascular development in vitro; however, a link to cardiovascular defects in diabetic offspring remains to be investigated. METHODS We have studied cardiovascular development in offspring of MD rats by examining serial histological sections of GD 12.0,18.0 offspring. Development of pharyngeal arch artery malformations was analyzed and related to intracardiac anomalies. RESULTS Pharyngeal arch artery and intracardiac defects were present in 27 of 37 MD GD 13.0,18.0 offspring. Early sixth arch arteries showed abrogated arteriogenesis, whereas fourth arch artery defects developed as a result of abnormal remodeling. Morphometrical analysis showed increased apoptosis in regressing artery segments and reduced apoptosis in persisting artery segments. Double outlet right ventricle with infundibular stenosis (tetralogy of Fallot) was predominantly found in combination with sixth artery defects and pulmonary atresia. As confirmed by morphometric analysis and three-dimensional (3D)-reconstructions, outflow tract defects coincided with endocardial cushion hypoplasia. Cases with teratology of Fallot additionally showed a shorter outflow tract. No relation with apoptosis or disturbed neural crest cell migration was found. CONCLUSIONS Our data uniquely demonstrate mechanistic differences involved in the development of sixth and fourth artery anomalies. Whereas increased apoptosis induces fourth artery anomalies, pulmonary outflow obstruction abrogates sixth artery differentiation independent of apoptosis. The model presented allows analysis of diabetic conditions on cardiovascular development in vivo, essential for elucidating this teratology. Birth Defects Research (Part A), 2004. © 2004 Wiley-Liss, Inc. [source]