New Spines (new + spine)

Distribution by Scientific Domains

Selected Abstracts

Electron microscopic 3D-reconstruction of dendritic spines in cultured hippocampal neurons undergoing synaptic plasticity

Wladimir Ovtscharoff Jr.
Abstract Dendritic spines are assumed to constitute the locus of neuronal plasticity, and considerable effort has been focused on attempts to demonstrate that new memories are associated with the formation of new spines. However, few studies that have documented the appearance of spines after exposure to plasticity-producing paradigms could demonstrate that a new spine is touched by a bona fida presynaptic terminal. Thus, the functional significance of plastic dendritic spine changes is not clearly understood. We have used quantitative time lapse confocal imaging of cultured hippocampal neurons before and after their exposure to a conditioning medium which activates synaptic NMDA receptors. Following the experiment the cultures were prepared for 3D electron microscopic reconstruction of visually identified dendritic spines. We found that a majority of new, 1- to 2-h-old spines was touched by presynaptic terminals. Furthermore, when spines disappeared, the parent dendrites were sometime touched by a presynaptic bouton at the site where the previously identified spine had been located. We conclude that new spines are most likely to be functional and that pruned spines can be transformed into shaft synapses and thus maintain their functionality within the neuronal network. 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008. [source]

Spontaneous electrical activity and dendritic spine size in mature cerebellar Purkinje cells

Robin J. Harvey
Abstract Previous experiments have shown that in the mature cerebellum both blocking of spontaneous electrical activity and destruction of the climbing fibres by a lesion of the inferior olive have a similar profound effect on the spine distribution on the proximal dendrites of the Purkinje cells. Many new spines develop that are largely innervated by parallel fibers. Here we show that blocking electrical activity leads to a significant decrease in size of the spines on the branchlets. We have also compared the size of the spines of the proximal dendritic domain that appear during activity block and after an inferior olive lesion. In this region also, the spines in the absence of activity are significantly smaller. In the proximal dendritic domain, the new spines that develop in the absence of activity are innervated by parallel fibers and are not significantly different in size from those of the branchlets, although they are shorter. Thus, the spontaneous activity of the cerebellar cortex is necessary not only to maintain the physiological spine distribution profile in the Purkinje cell dendritic tree, but also acts as a signal that prevents spines from shrinking. [source]