Network Interactions (network + interaction)

Distribution by Scientific Domains


Selected Abstracts


Hydrogen peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough

ENVIRONMENTAL MICROBIOLOGY, Issue 10 2010
Aifen Zhou
Summary To understand how sulphate-reducing bacteria respond to oxidative stresses, the responses of Desulfovibrio vulgaris Hildenborough to H2O2 -induced stresses were investigated with transcriptomic, proteomic and genetic approaches. H2O2 and induced chemical species (e.g. polysulfide, ROS) and redox potential shift increased the expressions of the genes involved in detoxification, thioredoxin-dependent reduction system, protein and DNA repair, and decreased those involved in sulfate reduction, lactate oxidation and protein synthesis. A gene coexpression network analysis revealed complicated network interactions among differentially expressed genes, and suggested possible importance of several hypothetical genes in H2O2 stress. Also, most of the genes in PerR and Fur regulons were highly induced, and the abundance of a Fur regulon protein increased. Mutant analysis suggested that PerR and Fur are functionally overlapped in response to stresses induced by H2O2 and reaction products, and the upregulation of thioredoxin-dependent reduction genes was independent of PerR or Fur. It appears that induction of those stress response genes could contribute to the increased resistance of deletion mutants to H2O2 -induced stresses. In addition, a conceptual cellular model of D. vulgaris responses to H2O2 stress was constructed to illustrate that this bacterium may employ a complicated molecular mechanism to defend against the H2O2 -induced stresses. [source]


Propagation Dynamics of Epileptiform Activity Acutely Induced by Bicuculline in the Hippocampal,Parahippocampal Region of the Isolated Guinea Pig Brain

EPILEPSIA, Issue 12 2005
Laura Uva
Summary:,Purpose: Aim of the study is to investigate the involvement of parahippocampal subregions in the generation and in the propagation of focal epileptiform discharges in an acute model of seizure generation in the temporal lobe induced by arterial application of bicuculline in the in vitro isolated guinea pig brain preparation. Methods: Electrophysiological recordings were simultaneously performed with single electrodes and multichannel silicon probes in the entorhinal, perirhinal, and piriform cortices and in the area CA1 of the hippocampus of the in vitro isolated guinea pig brain. Interictal and ictal epileptiform discharges restricted to the temporal region were induced by a brief (3,5 min) arterial perfusion of the GABAA receptor antagonist, bicuculline methiodide (50 ,M). Current source density analysis of laminar field profiles performed with the silicon probes was carried out at different sites to establish network interactions responsible for the generation of epileptiform potentials. Nonlinear regression analysis was conducted on extracellular recordings during ictal onset in order to quantify the degree of interaction between fast activities generated at different sites, as well as time delays. Results: Experiments were performed in 31 isolated guinea pig brains. Bicuculline-induced interictal and ictal epileptiform activities that showed variability of spatial propagation and time course in the olfactory,temporal region. The most commonly observed pattern (n = 23) was characterized by the initial appearance of interictal spikes (ISs) in the piriform cortex (PC), which propagated to the lateral entorhinal region. Independent and asynchronous preictal spikes originated in the entorhinal cortex (EC)/hippocampus and progressed into ictal fast discharges (around 25 Hz) restricted to the entorhinal/hippocampal region. The local generation of fast activity was verified and confirmed both by CSD and phase shift analysis performed on laminar profiles. Fast activity was followed by synchronous afterdischarges that propagated to the perirhinal cortex (PRC) (but not to the PC). Within 1,9 min, the ictal discharge ceased and a postictal period of depression occurred, after which periodic ISs in the PC resumed. Unlike preictal ISs, postictal ISs propagated to the PRC. Conclusions: Several studies proposed that reciprocal connections between the entorhinal and the PRC are under a very efficient inhibitory control (1). We report that ISs determined by acute bicuculline treatment in the isolated guinea pig brain progress from the PC to the hippocampus/EC just before ictal onset. Ictal discharges are characterized by a peculiar pattern of fast activity that originates from the entorhinal/hippocampal region and only secondarily propagates to the PRC. Postictal propagation of ISs to the PRC occured exclusively when an ictal discharge was generated in the hippocampal/entorhinal region. The results suggest that reiteration of ictal events may promote changes in propagation pattern of epileptiform discharges that could act as trigger elements in the development of temporal lobe epilepsy. [source]


Topographic distribution of direct and hippocampus- mediated entorhinal cortex activity evoked by olfactory tract stimulation

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2004
Vadym Gnatkovsky
Abstract Olfactory information is central for memory-related functions, such as recognition and spatial orientation. To understand the role of olfaction in learning and memory, the distribution and propagation of olfactory tract-driven activity in the parahippocampal region needs to be characterized. We recently demonstrated that repetitive stimulation of the olfactory tract in the isolated guinea pig brain preparation induces an early direct activation of the rostrolateral entorhinal region followed by a delayed response in the medial entorhinal cortex (EC), preceded by the interposed activation of the hippocampus. In the present study we performed a detailed topographic analysis of both the early and the delayed entorhinal responses induced by patterned stimulation of the lateral olfactory tract in the isolated guinea pig brain. Bi-dimensional maps of EC activity recorded at 128 recording sites with 4 4 matrix electrodes (410 m interlead separation) sequentially placed in eight different positions, showed (i) an early (onset at 16.09 1.2 ms) low amplitude potential mediated by the monosynaptic LOT input, followed by (ii) an associative potential in the rostral EC which originates from the piriform cortex (onset at 33.2 2.3 ms), and (iii) a delayed potential dependent on the previous activation of the hippocampus. The sharp component of the delayed response had an onset latency between 52 and 63 ms and was followed by a slow wave. Laminar profile analysis demonstrated that in the caudomedial EC the delayed response was associated with two distinct current sinks located in deep and in superficial layers, whereas in the rostrolateral EC a small-amplitude sink could be detected in the superficial layers exclusively. The present report demonstrates that the output generated by the hippocampal activation is unevenly distributed across different EC subregions and indicates that exclusively the medial and caudal divisions receive a deep-layer input from the hippocampus. In the rostrolateral EC, specific network interactions may be generated by the convergence of the direct olfactory input and the olfaction-driven hippocampal output. [source]


Neural system interactions underlying human transitive inference

HIPPOCAMPUS, Issue 8 2010
Sandra N. Moses
Abstract Human problem solving relies on multiple strategies supported by dynamic neural network interactions. The transitive inference (TI) problem solving task can be accomplished by the extraction of relations among stimuli or by responding to reinforcement histories of items using associative learning. Relational and associative strategies are assumed to rely on the hippocampus and caudate nucleus, respectively; which compete to control behavior. However, we found that increased recruitment of both systems in TI is correlated with greater accuracy and awareness, and reduced associative responding to single items. Contrary to prior assumptions, the hippocampus and caudate interact cooperatively to facilitate successful TI. We suggest that the dynamics of the relationship between the hippocampus and caudate depends critically upon task demands. 2010 Wiley-Liss, Inc. [source]


Levodopa affects functional brain networks in parkinsonian resting tremor,

MOVEMENT DISORDERS, Issue 1 2009
Bettina Pollok PhD
Abstract Resting tremor in idiopathic Parkinson's disease (PD) is associated with an oscillatory network comprising cortical as well as subcortical brain areas. To shed light on the effect of levodopa on these network interactions, we investigated 10 patients with tremor-dominant PD and reanalyzed data in 11 healthy volunteers mimicking PD resting tremor. To this end, we recorded surface electromyograms of forearm muscles and neuromagnetic activity using a 122-channel whole-head magnetometer (MEG). Measurements were performed after overnight withdrawal of levodopa (OFF) and 30 min after oral application of fast-acting levodopa (ON). During OFF, patients showed the typical antagonistic resting tremor. Using the analysis tool Dynamic Imaging of Coherent Sources, we identified the oscillatory network associated with tremor comprising contralateral primary sensorimotor cortex (S1/M1), supplementary motor area (SMA), contralateral premotor cortex (PMC), thalamus, secondary somatosensory cortex (S2), posterior parietal cortex (PPC), and ipsilateral cerebellum oscillating at 8 to 10 Hz. After intake of levodopa, we found a significant decrease of cerebro-cerebral coupling between thalamus and motor cortical areas. Similarly, in healthy controls mimicking resting tremor, we found a significant decrease of functional interaction within a thalamus,premotor,motor network during rest. However, in patients with PD, decrease of functional interaction between thalamus and PMC was significantly stronger when compared with healthy controls. These data support the hypothesis that (1) in patients with PD the basal ganglia and motor cortical structures become more closely entrained and (2) levodopa is associated with normalization of the functional interaction between thalamus and motor cortical areas. 2008 Movement Disorder Society [source]


Mathematical modeling of the circadian rhythm of key neuroendocrine,immune system players in rheumatoid arthritis: A systems biology approach

ARTHRITIS & RHEUMATISM, Issue 9 2009
Michael Meyer-Hermann
Objective Healthy subjects and patients with rheumatoid arthritis (RA) exhibit circadian rhythms of the neuroendocrine,immune system. Understanding circadian dynamics is complex due to the nonlinear behavior of the neuroendocrine,immune network. This study was undertaken to seek and test a mathematical model for studying this network. Methods We established a quantitative computational model to simulate nonlinear interactions between key factors in the neuroendocrine,immune system, such as plasma tumor necrosis factor (TNF), plasma cortisol (and adrenal cholesterol store), and plasma noradrenaline (NA) (and presynaptic NA store). Results The model was nicely fitted with measured reference data on healthy subjects and RA patients. Although the individual circadian pacemakers of cortisol, NA, and TNF were installed without a phase shift, the relative phase shift between these factors evolved as a consequence of the modeled network interactions. Combined long-term and short-term TNF increase (the "RA model") increased cortisol plasma levels for only a few days, and cholesterol stores started to become markedly depleted. This nicely demonstrated the phenomenon of inadequate cortisol secretion relative to plasma TNF levels, as a consequence of adrenal deficiency. Using the RA model, treatment with glucocorticoids between midnight and 2:00 AM was found to have the strongest inhibitory effect on TNF secretion, which supports recent studies on RA therapy. Long-term reduction of TNF levels by simulation of anti-TNF therapy normalized cholesterol stores under "RA" conditions. Conclusion These first in silico studies of the neuroendocrine,immune system in rheumatology demonstrate that computational biology in medicine, making use of large collections of experimental data, supports understanding of the pathophysiology of complex nonlinear systems. [source]