Neutral pH Range (neutral + ph_range)

Distribution by Scientific Domains


Selected Abstracts


Electrochemical Detection of Cadmium and Lead Complexes with Low Molecular Weight Organic Acids

ELECTROANALYSIS, Issue 3-5 2009
Jaklová Dytrtová
Abstract The Cd and Pb complexes with oxalic (OA) and citric acid (CA) were detected in model and soil solutions using cyclic and stripping voltammetry. A mixed complex consisting of Cd, Pb, and OA was found; its peak potential varied from ,582.0 to ,542.5,mV (vs. Ag/AgCl/KCl(3,mol L,1)). For mixed complex formation, the presence of PbOH+ species and Cd2+ in oxalic acid solution was necessary. Only the ,simple' complexes of CA with Pb and Cd were found in the model solution. The existence of all investigated metal complexes is confined to neutral pH range. The mixed complex was also found in real soil solutions. [source]


Removal of fluoride using some lanthanum(III)-loaded adsorbents with different functional groups and polymer matrices

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 10 2003
Luo Fang
Abstract Although fluoride is beneficial for human beings in small quantities, it causes dental fluorosis when consumed in larger quantities over a period of time. In recent years, considerable work has been conducted for the purpose of developing new and low cost absorbents for adsorptive removal of fluoride, especially chelating resins loaded with metal ions. In the present study, several types of adsorbents with different functional groups loaded with lanthanum(III) were prepared to be used for fluoride removal from water. The optimum conditions for loading lanthanum(III) on the adsorbents and the effects of pH and initial fluoride concentration as well as shaking time and solid,liquid ratio on the removal of fluoride have been investigated. Based on these fundamental data, the removal of fluoride from actual hot spring water was also tested as a practical application by comparing the efficiency of different adsorbents for the removal of fluoride from hot spring water. The following conclusions were obtained. (1) The different chemical composition and chemical structure of the polymer matrix play the most important role in fluoride adsorption, (2) strongly acidic adsorbents are more effective on fluoride removal at neutral pH than weakly acidic adsorbents, (3) the order of fluoride removal in the neutral pH range of 4.5,8.0 by the different La(III)-loaded adsorbents employed in the present work is as follows: 200CT resin > POJRgel > IR124resin > SOJR gel , CPAgel , WK11 resin. The column experiments showed that the 200CT resin loaded with lanthanum(III) at pH 6.0 can be successfully employed for the removal of fluoride ions from actual hot spring water. Copyright © 2003 Society of Chemical Industry [source]


Effects of Hf content and immersion time on electrochemical behavior of biomedical Ti-22Nb- xHf alloys in 0.9% NaCl solution

MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 5 2009
B. L. Wang
Abstract The aim of this study was to investigate the effects of Hf content and immersion time on the electrochemical corrosion behavior of the Ti-22Nb- xHf (x,=,0, 2, 4, and 6 at%) alloy samples in 0.9% NaCl solution at 37,°C and neutral pH range, utilizing the potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. From the polarization curves, all these alloys exhibited typical passive behavior, which was indicated by a wide passive region without the breakdown of the passive films and low corrosion current densities. In addition, the values of the corrosion current densities and passive current densities decreased with increase in the Hf content. The EIS results, fitted by RS(QPRP) model, exhibited capacitive behavior (high corrosion resistance) with phase angles closed to ,80° and high impedance values at low and medium frequencies, indicating the formation of a highly stable film on these alloys in the test solution. The resistance of the passive films improved with increase in the Hf content and immersion time. All these observations suggested a more noble electrochemical behavior of the Ti-22Nb- xHf alloys compared to the Ti-Nb binary alloy. [source]


A novel prohormone processing site in Aplysia californica: the Leu,Leu rule

JOURNAL OF NEUROCHEMISTRY, Issue 6 2002
Amanda B. Hummon
Abstract Neuropeptides are a complex set of signaling molecules produced through enzymatic cleavages from longer prohormone sequences. The most common cleavage sites in prohormones are basic amino acid residues; however, processing is observed at non-basic sites. Cleavage at Leu,Leu sequences has been observed in three Aplysia californica prohormones. To further investigate this unusual event, native and non-native synthetic peptides containing Leu,Leu residues are incubated with homogenates of Aplysia californica ganglia and the resulting products monitored with MALDI MS. Cleavage near and between Leu,Leu residues is observed in the abdominal and buccal ganglia homogenates, confirming the presence of an unidentified peptidase. In addition, fractions from an HPLC separation of buccal ganglia homogenates also produce cleavages at Leu,Leu residues. Products resulting from cleavage at Leu,Leu sites are observed and are produced in larger amounts in acidic and neutral pH ranges, and cleavage is inhibited by the addition of EDTA, suggesting a metal is required for activity. [source]