Neuronal Responses (neuronal + response)

Distribution by Scientific Domains


Selected Abstracts


Period 2 Gene Deletion Abolishes ,-Endorphin Neuronal Response to Ethanol

ALCOHOLISM, Issue 9 2010
Maria Agapito
Background:, Ethanol exposure during early life has been shown to permanently alter the circadian expression of clock regulatory genes and the ,-endorphin precursor proopiomelanocortin (POMC) gene in the hypothalamus. Ethanol also alters the stress- and immune-regulatory functions of ,-endorphin neurons in laboratory rodents. Our aim was to determine whether the circadian clock regulatory Per2 gene modulates the action of ethanol on ,-endorphin neurons in mice. Methods:,Per2 mutant (mPer2Brdml) and wild type (C57BL/6J) mice were used to determine the effect of Per2 mutation on ethanol-regulated ,-endorphin neuronal activity during neonatal period using an in vitro mediobasal hypothalamic (MBH) cell culture model and an in vivo milk formula feeding animal model. The ,-endorphin neuronal activity following acute and chronic ethanol treatments was evaluated by measuring the peptide released from cultured cells or peptide levels in the MBH tissues, using enzyme-linked immunosorbent assay (ELISA). Results:,Per2 mutant mice showed a higher basal level of ,-endorphin release from cultured MBH cells and a moderate increase in the peptide content in the MBH in comparison with control mice. However, unlike wild type mice, Per2 mutant mice showed no stimulatory or inhibitory ,-endorphin-secretory responses to acute and chronic ethanol challenges in vitro. Furthermore, Per2 mutant mice, but not wild type mice, failed to show the stimulatory and inhibitory responses of MBH ,-endorphin levels to acute and chronic ethanol challenges in vivo. Conclusions:, These results suggest for the first time that the Per2 gene may be critically involved in regulating ,-endorphin neuronal function. Furthermore, the data revealed an involvement of the Per2 gene in regulating ,-endorphin neuronal responses to ethanol. [source]


Kindling Limits the Interictal Neuronal Temporal Response Properties in Cat Primary Auditory Cortex

EPILEPSIA, Issue 2 2005
Pamela A. Valentine
Summary:,Purpose: The present study examined the effect of electrical kindling on the interictal temporal response properties of single units recorded from primary auditory cortex (AI) of the adult cat. Methods: Cats were permanently implanted with electrodes in AI, kindled twice daily for 40 sessions, and the contralateral AI was subsequently mapped. Kindling stimulation consisted of 1-s trains of biphasic square-wave pulses applied at a frequency of 60 Hz, 100 ,A above the afterdischarge (AD) threshold. The EEG activity was recorded during each kindling session, and the behavioral manifestation was scored. Subsequent to kindling, multiple single-unit responses were recorded under ketamine anesthesia in response to 1-s-long periodic click trains, with click rates between 2 and 64 Hz. Neuronal responses were characterized according to their ability to respond in time-locked fashion to the clicks. Results: Kindling stimulation resulted in progression of the AD characteristics and seizure behavior, with six of 10 kindled cats reaching a fully generalized state. In the fully kindled cats, the best modulation frequencies and limiting following rates for the single-unit responses were significantly lower compared with those of naive and sham controls. Conclusions: Repeated epileptiform activity interferes with temporal processing in cat auditory cortex in the interictal state. This may have implications for people with epileptic foci in auditory-related areas. [source]


GABA and glycine are protective to mature but toxic to immature rat cortical neurons under hypoxia

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2005
Peng Zhao
Abstract Although recent studies suggest that ,-aminobutyric acid (GABA) and glycine may be ,inhibitory' to mature neurons, but ,excitatory' to immature neurons under normoxia, it is unknown whether inhibitory neurotransmitters are differentially involved in neuronal response to hypoxia in immature and mature neurons. In the present study, we exposed rat cortical neurons to hypoxia (1% O2) and examined the effects of three major inhibitory neurotransmitters (GABA, glycine and taurine) on the hypoxic neurons at different neuronal ages [days in vitro (DIV)4,20]. Our data showed that the cortical neurons expressed both GABAA and glycine receptors with differential developmental profiles. GABA (10,2000 µm) was neuroprotective to hypoxic neurons of DIV20, but enhanced hypoxic injury in neurons of <,DIV20. Glycine at low concentrations (10,100 µm) exhibited a similar pattern to GABA. However, higher concentrations of glycine (1000,2000 µm) for long-term exposure (48,72 h) displayed neuroprotection at all ages (DIV4,20). Taurine (10,2000 µm), unlike GABA and glycine, displayed protection only in DIV4 neurons, and was slightly toxic to neurons >,DIV4. In comparison with delta-opioid receptor (DOR)-induced protection in DIV20 neurons exposed to 72 h of hypoxia, glycine-induced protection was weaker than that of DOR but stronger than that of GABA and taurine. These data suggest that the effects of the inhibitory neurotransmitters on hypoxic cortical neurons are age-dependent, with GABA and glycine being neurotoxic to immature neurons and neuroprotective to mature neurons. [source]


Centre-surround interactions in response to natural scene stimulation in the primary visual cortex

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2005
Kun Guo
Abstract Centre,surround interaction in the primary visual cortex (area V1) has been studied extensively using artificial, abstract stimulus patterns, such as bars, gratings and simple texture patterns. In this experiment, we extend the study of centre,surround interaction by using natural scene images. We systematically varied the contrast of natural image surrounds presented outside the classical receptive field (CRF), and recorded neuronal response to a natural image patch presented within the CRF in area V1 of awake, fixating macaques. For the majority of neurons (67 out of 111), the natural image surrounds profoundly modulated, mainly by suppressing, neuronal responses to CRF images. These modulatory effects started at the earliest stage of neuronal responses, and often depended on the contrast and higher-order structures of the surrounds. For 47 out of 67 neurons, randomising the phases of the Fourier spectrum of the natural image surround diminished the centre,surround interaction. Our results suggest that the centre,surround interaction in area V1 can be extended to natural vision, and is sensitive to the higher-order structures of natural scene images, such as image contours. [source]


Binding partners L1 cell adhesion molecule and the ezrin-radixin-moesin (ERM) proteins are involved in development and the regenerative response to injury of hippocampal and cortical neurons

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2004
Matilda A. Haas
Abstract Regeneration of the adult central nervous system may require recapitulation of developmental events and therefore involve the re-expression of developmentally significant proteins. We have investigated whether the L1 cell adhesion molecule, and its binding partner, the ezrin-radixin-moesin (ERM) proteins are involved in the neuronal regenerative response to injury. Hippocampal and cortical neurons were cultured in vitro on either an L1 substrate or poly-L-lysine, and ERM and other neuronal proteins were localized immunocytochemically both developmentally and following neurite transection of neurons maintained in long-term culture. Activated ERM was localized to growth cones up to 7 days in vitro but relatively mature cultures (21 days in vitro) were devoid of active ERM proteins. However, ERM proteins were localized to the growth cones of sprouting neuronal processes that formed several hours after neurite transection. In addition, the L1 substrate, relative to poly-L-lysine, resulted in significantly longer regenerative neurites, as well as larger growth cones with more filopodia. Furthermore, neurons derived from the cortex formed significantly longer post-injury neurite sprouts at 6 h post-injury than hippocampal derived neurons grown on both substrates. We have demonstrated that L1 and the ERM proteins are involved in the neuronal response to injury, and that neurons derived from the hippocampus and cortex may have different post-injury regenerative neurite sprouting abilities. [source]


Self-motion and the origin of differential spatial scaling along the septo-temporal axis of the hippocampus

HIPPOCAMPUS, Issue 7 2005
Andrew P. Maurer
Abstract Spatial scaling of place specific activity in the hippocampus varies systematically from the septal pole (high resolution) to the temporal pole (low resolution). Place fields get progressively larger, and the probability of observing a field in a given environment gets progressively smaller. It was previously found that decoupling movement in space from ambulation, by having the animal actively ride on a mobile platform, results in marked enlargement of the spatial scale factor in the dorsal hippocampus and a reduction in the increase in theta rhythm power with running speed, suggesting that a self-motion signal determines the spatial scale at which the hippocampal population vector updates. These results led to the hypothesis that the gain of the self-motion signal may vary systematically along the septo-temporal axis of the hippocampus. To test this hypothesis, EEG theta rhythm and ensembles of CA1 pyramidal cells and interneurons were recorded from the extreme dorsal and middle portions of the hippocampus. Pyramidal cell population vectors representing successive locations became decorrelated over substantially shorter distances in the dorsal than in the middle hippocampus. Dorsal pyramidal cells had smaller place fields, higher mean and peak firing rates, and higher intrinsic oscillation frequencies during track running than that of middle pyramidal cells. Both dorsal pyramidal cells and interneurons had more elevated mean rates during running, compared with rest, than that of the corresponding cell classes in the middle hippocampus, and both cell classes increased their rates more as a function of speed in the dorsal hippocampus. The amplitude, but not the frequency of fissure recorded theta rhythm, increased more as a function of running speed in the dorsal than in the middle hippocampus. We conclude that variation in the neuronal response to movement speed is the likely basis for the systematic variation in spatial scaling along the septo-temporal axis of the hippocampus. © 2005 Wiley-Liss, Inc. [source]


Comparison of neuronal and hemodynamic measures of the brain response to visual stimulation: An optical imaging study

HUMAN BRAIN MAPPING, Issue 1 2001
Gabriele Gratton
Abstract The noninvasive mapping of hemodynamic brain activity has led to significant advances in neuroimaging. This approach is based in part on the assumption that hemodynamic changes are proportional to (and therefore constitute a linear measure of) neuronal activity. We report a study investigating the quantitative relationship between neuronal and hemodynamic measures. This study exploited the fact that optical imaging methods can simultaneously provide noninvasive measures of neuronal and hemodynamic activity from the same region of the brain. We manipulated visual stimulation frequency and measured responses from the medial occipital area of 8 young adults. The results were consistent with a model postulating a linear relationship between the neuronal activity integrated over time and the amplitude of the hemodynamic response. The hemodynamic response colocalized with the neuronal response. These data support the use of quantitative neuroimaging methods to infer the intensity and localization of neuronal activity in occipital areas. Hum. Brain Mapping 13:13,25, 2001. © 2001 Wiley-Liss, Inc. [source]


Effect of systemic hormonal cyclicity on skin

INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 1 2006
N. Muizzuddin
Fluctuations in estrogen and progesterone during the menstrual cycle can cause changes in body systems other than the reproductive system. We conducted several studies to determine a possible correlation between phases of the menstrual cycle and specific skin properties. Healthy Caucasian women (ages 21,48), who had a typical 26,29 day menstrual cycle, participated in the studies. Measurements of skin barrier strength, dryness, response to lactic acid stinging, skin surface lipids, and microflora were obtained every week for 2 to 3 months. Ultraviolet B (UV-B) susceptibility in terms of minimal erythemal dose was also studied. The skin barrier was the weakest between days 22 and 26 of the cycle. Elevated neuronal response (lactic acid sting) was not observed to vary much with the cycle. Skin was driest between day 1 and day 6, while skin surface lipid secretion appeared to be highest on days 16,20 of the hormonal cycle. The highest microbial count was around days 16,22, and there was a high UV-B susceptibility between days 20 and 28 of the menstrual cycle. [source]


Differential transient MEG and fMRI responses to visual stimulation onset rate

INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, Issue 1 2008
August S. Tuan
Abstract While recent analysis of functional magnetic resonance imaging (fMRI) data utilize a generalized nonlinear convolution model (e.g., dynamic causal modeling), most conventional analyses of local responses utilize a linear convolution model (e.g., the general linear model). These models assume a linear relationship between the blood oxygenated level dependent (BOLD) signal and the underlying neuronal response. While previous studies have shown that this "neurovascular coupling" process is approximately linear, short stimulus durations are known to produce a larger fMRI response than expected from a linear system. This divergence from linearity between the stimulus time-course and BOLD signal could be caused by neuronal onset and offset transients, rather than a nonlinearity in the hemodynamics related to BOLD contrast. We tested this hypothesis by measuring MEG and fMRI responses to stimuli with ramped contrast onsets and offsets in place of abrupt transitions. MEG results show that the ramp successfully reduced the transient onset of neural activity. However, the nonlinearity in the fMRI response, while also reduced, remained. Predictions of fMRI responses from MEG signals show a weaker nonlinearity than observed in the actual fMRI data. These results suggest that the fMRI BOLD nonlinearity seen with short duration stimuli is not solely due to transient neuronal activity. © 2008 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 18, 17,28, 2008 [source]


Expression of insulin-like growth factor system genes during the early postnatal neurogenesis in the mouse hippocampus

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 8 2007
Jihui Zhang
Abstract Insulin-like growth factor-1 (IGF-1) is essential to hippocampal neurogenesis and the neuronal response to hypoxia/ischemia injury. IGF (IGF-1 and -2) signaling is mediated primarily by the type 1 IGF receptor (IGF-1R) and modulated by six high-affinity binding proteins (IGFBP) and the type 2 IGF receptor (IGF-2R), collectively termed IGF system proteins. Defining the precise cells that express each is essential to understanding their roles. With the exception of IGFBP-1, we found that mouse hippocampus expresses mRNA for each of these proteins during the first 2 weeks of postnatal life. Compared to postnatal day 14 (P14), mRNA abundance at P5 was higher for IGF-1, IGFBP-2, -3, and -5 (by 71%, 108%, 100%, and 98%, respectively), lower for IGF-2, IGF-2R, and IGFBP-6 (by 65%, 78%, and 44%, respectively), and unchanged for IGF-1R and IGFBP-4. Using laser capture microdissection (LCM), we found that granule neurons and pyramidal neurons exhibited identical patterns of expression of IGF-1, IGF-1R, IGF-2R, IGFBP-2, and -4, but did not express other IGF system genes. We then compared IGF system expression in mature granule neurons and their progenitors. Progenitors exhibited higher mRNA levels of IGF-1 and IGF-1R (by 130% and 86%, respectively), lower levels of IGF-2R (by 72%), and similar levels of IGFBP-4. Our data support a role for IGF in hippocampal neurogenesis and provide evidence that IGF actions are regulated within a defined in vivo milieu. © 2007 Wiley-Liss, Inc. [source]


,-Endorphin Neuronal Cell Transplant Reduces Corticotropin Releasing Hormone Hyperresponse to Lipopolysaccharide and Eliminates Natural Killer Cell Functional Deficiencies in Fetal Alcohol Exposed Rats

ALCOHOLISM, Issue 5 2009
Nadka I. Boyadjieva
Background:, Natural killer (NK) cell dysfunction is associated with hyperresponse of corticotropin releasing hormone (CRH) to immune challenge and with a loss of ,-endorphin (BEP) neurons in fetal alcohol exposed animals. Recently, we established a method to differentiate neural stem cells into BEP neurons using cyclic adenosine monophosphate (cAMP)-elevating agents in cultures. Hence, we determined whether in vitro differentiated BEP neurons could be used for reversing the compromised stress response and immune function in fetal alcohol exposed rats. Methods:, To determine the effect of BEP neuron transplants on NK cell function, we implanted in vitro differentiated BEP neurons into the paraventricular nucleus of pubertal and adult male rats exposed to ethanol or control in utero. The functionality of transplanted BEP neurons was determined by measuring proopiomelanocortin (POMC) gene expression in these cells and their effects on CRH gene expression under basal and after lipopolysaccaride (LPS) challenge. In addition, the effectiveness of BEP neurons in activating NK cell functions is determined by measuring NK cell cytolytic activity and interferon-, (IFN-,) production in the spleen and in the peripheral blood mononuclear cell (PBMC) following cell transplantation. Results:, We showed here that when these in vitro differentiated BEP neurons were transplanted into the hypothalamus, they maintain biological functions by producing POMC and reducing the CRH neuronal response to the LPS challenge. BEP neuronal transplants significantly increased NK cell cytolytic activity in the spleen and in the PBMC and increased plasma levels of IFN-, in control and fetal alcohol exposed rats. Conclusions:, These data further establish the BEP neuronal regulatory role in the control of CRH and NK cell cytolytic function and identify a possible novel therapy to treat stress hyperresponse and immune deficiency in fetal alcohol exposed subjects. [source]


Stimulation of the rat somatosensory cortex at different frequencies and pulse widths

NMR IN BIOMEDICINE, Issue 1 2006
N. Van Camp
Abstract Functional MRI (fMRI) during electrical somatosensory stimulation of the rat forepaw is a widely used model to investigate the functional organization of the somatosensory cortex or to study the underlying mechanisms of the blood oxygen level-dependent (BOLD) response. In reality, somatosensory stimuli have complex timing relationships and are of long duration. However, by default electrical sensory stimulation seems to be performed at an extremely short pulse width (0.3,ms). As the pulse duration may alter the neuronal response, our aim was to investigate the influence of a much longer stimulus pulse width (10,ms) using BOLD fMRI during electrical forepaw stimulation. The optimal neuronal response was investigated by varying the stimulus frequency at a fixed pulse duration (10,ms) and amplitude (1,mA). In a parallel experiment we measured the neuronal response directly by recording the somatosensory evoked potentials (SEPs). Quantification of the BOLD data revealed a shift in the optimal response frequencies to 8,10,Hz compared with 1,Hz at 0.3,ms. The amplitude of the recorded SEPs decreased with increasing stimulation frequency and did not display any correlation with the BOLD data. Nevertheless, the summated SEPs, which are a measure of the integrated neuronal activity as a function of time, displayed a similar response profile, with a similar maximum as observed by relative BOLD changes. This shift in optimal excitation frequencies might be related to the fact that an increased pulse width of an electrical stimulus alters the nature of the stimulation, generating also sensorimotor instead of merely somatosensory input. This may influence or alter the activated pathways, resulting in a shift in the optimal response profile. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Attenuation of pain and inflammation in adjuvant-induced arthritis by the proteasome inhibitor MG132

ARTHRITIS & RHEUMATISM, Issue 7 2010
Aisha S. Ahmed
Objective In rheumatoid arthritis (RA), pain and joint destruction are initiated and propagated by the production of proinflammatory mediators. Synthesis of these mediators is regulated by the transcription factor NF-,B, which is controlled by the ubiquitin proteasome system (UPS). The present study explored the effects of the proteasome inhibitor MG132 on inflammation, pain, joint destruction, and expression of sensory neuropeptides as markers of neuronal response in a rat model of arthritis. Methods Arthritis was induced in rats by injection of heat-killed Mycobacterium butyricum. Arthritis severity was scored, and nociception was evaluated by mechanical pressure applied to the hind paw. Joint destruction was assessed by radiologic and histologic analyses. NF-,B DNA-binding activity was analyzed by electromobility shift assay, and changes in the expression of the p50 NF-,B subunit and the proinflammatory neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) were detected by immunohistochemistry. Results Arthritic rats treated with MG132 demonstrated a marked reduction in inflammation, pain, and joint destruction. The elevated DNA-binding activity of the NF-,B/p50 homodimer and p50, as well as the neuronal expression of SP and CGRP, observed in the ankle joints of arthritic rats were normalized after treatment with MG132. Conclusion In arthritic rats, inhibition of proteasome reduced the severity of arthritis and reversed the pain behavior associated with joint inflammation. These effects may be mediated through the inhibition of NF-,B activation and may possibly involve the peripheral nervous system. New generations of nontoxic proteasome inhibitors may represent a novel pharmacotherapy for RA. [source]


PRECLINICAL STUDY: FULL ARTICLE: Effects of fatty acid amide hydrolase inhibition on neuronal responses to nicotine, cocaine and morphine in the nucleus accumbens shell and ventral tegmental area: involvement of PPAR-, nuclear receptors

ADDICTION BIOLOGY, Issue 3 2010
Antonio Luchicchi
ABSTRACT The endocannabinoid system regulates neurotransmission in brain regions relevant to neurobiological and behavioral actions of addicting drugs. We recently demonstrated that inhibition by URB597 of fatty acid amide hydrolase (FAAH), the main enzyme that degrades the endogenous cannabinoid N-acylethanolamine (NAE) anandamide and the endogenous non-cannabinoid NAEs oleoylethanolamide and palmitoylethanolamide, blocks nicotine-induced excitation of ventral tegmental area (VTA) dopamine (DA) neurons and DA release in the shell of the nucleus accumbens (ShNAc), as well as nicotine-induced drug self-administration, conditioned place preference and relapse in rats. Here, we studied whether effects of FAAH inhibition on nicotine-induced changes in activity of VTA DA neurons were specific for nicotine or extended to two drugs of abuse acting through different mechanisms, cocaine and morphine. We also evaluated whether FAAH inhibition affects nicotine-, cocaine- or morphine-induced actions in the ShNAc. Experiments involved single-unit electrophysiological recordings from DA neurons in the VTA and medium spiny neurons in the ShNAc in anesthetized rats. We found that URB597 blocked effects of nicotine and cocaine in the ShNAc through activation of both surface cannabinoid CB1-receptors and alpha-type peroxisome proliferator-activated nuclear receptor. URB597 did not alter the effects of either cocaine or morphine on VTA DA neurons. These results show that the blockade of nicotine-induced excitation of VTA DA neurons, which we previously described, is selective for nicotine and indicate novel mechanisms recruited to regulate the effects of addicting drugs within the ShNAc of the brain reward system. [source]


Nociceptive spinothalamic tract and postsynaptic dorsal column neurons are modulated by paraventricular hypothalamic activation

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2008
Gerardo Rojas-Piloni
Abstract Previously, we demonstrated that stimulation of the paraventricular hypothalamic nucleus diminishes the nociceptive dorsal horn neuronal responses, and this decrease was mediated by oxytocin in the rat. In addition, we have proposed that oxytocin indirectly inhibits sensory transmission in dorsal horn neurons by exciting spinal inhibitory GABAergic interneurons. The main purpose of the present study was to identify which of the neurons projecting to supraspinal structures to transmit somatic information are modulated by the hypothalamic-spinal descending activation. In anaesthetized rats, single-unit extracellular and juxtacellular recordings were made from dorsal horn lumbar segments, which receive afferent input from the toe and hind-paw regions. The projecting spinothalamic tract and postsynaptic dorsal column system were identified antidromically. Additionally, in order to label the projecting dorsal horn neurons, we injected fluorescent retrograde neuronal tracers into the ipsilateral gracilis nucleus and contralateral ventroposterolateral thalamic nucleus. Hence, juxtacellular recordings were made to iontophoretically label the recorded neurons with a fluorescent dye and identify the recorded projecting cells. We found that only nociceptive evoked responses in spinothalamic tract and postsynaptic dorsal column neurons were significantly inhibited (48.1 ± 4.6 and 47.7 ± 8.2%, respectively) and non-nociceptive responses were not affected by paraventricular hypothalamic nucleus stimulation. We conclude that the hypothalamic-spinal system selectively affects the transmission of nociceptive information of projecting spinal cord cells. [source]


Spectro-temporal sound density-dependent long-term adaptation in cat primary auditory cortex

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2008
Boris Gourévitch
Abstract Sensory systems use adaptive strategies to code for the changing environment on different time scales. Short-term adaptation (up to 100 ms) reflects mostly synaptic suppression mechanisms after response to a stimulus. Long-term adaptation (up to a few seconds) is reflected in the habituation of neuronal responses to constant stimuli. Very long-term adaptation (several weeks) can lead to plastic changes in the cortex, most often facilitated during early development, by stimulus relevance or by behavioral states such as attention. In this study, we show that long-term adaptation with a time course of tens of minutes is detectable in anesthetized adult cat auditory cortex after a few minutes of listening to random-frequency tone pips. After the initial post-onset suppression, a slow recovery of the neuronal response strength to tones at or near their best frequency was observed for low-rate random sounds (four pips per octave per second) during stimulation. The firing rate at the end of stimulation (15 min) reached levels close to that observed during the initial onset response. The effect, visible for both spikes and, to a smaller extent, local field potentials, decreased with increasing spectro-temporal density of the sound. The spectro-temporal density of sound may therefore be of particular relevance in cortical processing. Our findings suggest that low stimulus rates may produce a specific acoustic environment that shapes the primary auditory cortex through very different processing than for spectro-temporally more dense and complex sounds. [source]


Drifting grating stimulation reveals particular activation properties of visual neurons in the caudate nucleus

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2008
Attila Nagy
Abstract The role of the caudate nucleus (CN) in motor control has been widely studied. Less attention has been paid to the dynamics of visual feedback in motor actions, which is a relevant function of the basal ganglia during the control of eye and body movements. We therefore set out to analyse the visual information processing of neurons in the feline CN. Extracellular single-unit recordings were performed in the CN, where the neuronal responses to drifting gratings of various spatial and temporal frequencies were recorded. The responses of the CN neurons were modulated by the temporal frequency of the grating. The CN units responded optimally to gratings of low spatial frequencies and exhibited low spatial resolution and fine spatial frequency tuning. By contrast, the CN neurons preferred high temporal frequencies, and exhibited high temporal resolution and fine temporal frequency tuning. The spatial and temporal visual properties of the CN neurons enable them to act as spatiotemporal filters. These properties are similar to those observed in certain feline extrageniculate visual structures, i.e. in the superior colliculus, the suprageniculate nucleus and the anterior ectosylvian cortex, but differ strongly from those of the primary visual cortex and the lateral geniculate nucleus. Accordingly, our results suggest a functional relationship of the CN to the extrageniculate tecto-thalamo-cortical system. This system of the mammalian brain may be involved in motion detection, especially in velocity analysis of moving objects, facilitating the detection of changes during the animal's movement. [source]


Altered neuronal responses and regulation of neurotrophic proteins in the medial septum following fimbria-fornix transection in CNTF- and leukaemia inhibitory factor-deficient mice

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2006
Thomas Naumann
Abstract Degeneration of axotomized GABAergic septohippocampal neurones has been shown to be enhanced in ciliary neurotrophic factor (CNTF)-deficient mice following fimbria-fornix transection (FFT), indicating a neuroprotective function of endogenous CNTF. Paradoxically, however, the cholinergic population of septohippocampal neurones was more resistant to axotomy in these mutants. As leukaemia inhibitory factor (LIF) has been identified as a potential neuroprotective factor for the cholinergic medial septum (MS) neurones, FFT-induced responses were compared in CNTF,/,, LIF,/, and CNTF/LIF double knockout mice. In CNTF,/, mice, FFT-induced cholinergic degeneration was confirmed to be attenuated as compared with wildtype mice. The expression of both LIF and LIF receptor , was increased in the MS providing a possible explanation for the enhanced neuronal resistance to FFT in these animals. However, ablation of the LIF gene also produced paradoxical effects; following FFT in LIF,/, mice no loss of GABAergic or cholinergic MS neurones was detectable during the first postlesional week, suggesting that other efficient neuroprotective mechanisms are activated in these animals. In fact, enhanced activation of astrocytes, a source of neurotrophic proteins, was indicated by increased up-regulation of glial fibrillary acidic protein and vimentin expression. In addition, mRNA levels for neurotrophin signalling components (e.g. nerve growth factor, p75NTR) were differentially regulated. The positive effect on axotomized cholinergic neurones seen in CNTF,/, and LIF,/, mice as well as the increased up-regulation of astrogliose markers was abolished in CNTF/LIF double knockout animals. Our results indicate that endogenous CNTF and LIF are involved in the regulation of neuronal survival following central nervous system lesion and are integrated into a network of neurotrophic signals that mutually influence their expression and function. [source]


Centre-surround interactions in response to natural scene stimulation in the primary visual cortex

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2005
Kun Guo
Abstract Centre,surround interaction in the primary visual cortex (area V1) has been studied extensively using artificial, abstract stimulus patterns, such as bars, gratings and simple texture patterns. In this experiment, we extend the study of centre,surround interaction by using natural scene images. We systematically varied the contrast of natural image surrounds presented outside the classical receptive field (CRF), and recorded neuronal response to a natural image patch presented within the CRF in area V1 of awake, fixating macaques. For the majority of neurons (67 out of 111), the natural image surrounds profoundly modulated, mainly by suppressing, neuronal responses to CRF images. These modulatory effects started at the earliest stage of neuronal responses, and often depended on the contrast and higher-order structures of the surrounds. For 47 out of 67 neurons, randomising the phases of the Fourier spectrum of the natural image surround diminished the centre,surround interaction. Our results suggest that the centre,surround interaction in area V1 can be extended to natural vision, and is sensitive to the higher-order structures of natural scene images, such as image contours. [source]


Rat anterodorsal thalamic head direction neurons depend upon dynamic visual signals to select anchoring landmark cues

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2004
Michaėl B. Zugaro
Abstract Head direction cells, which are functionally coupled to ,place' cells of the hippocampus, a structure critically involved in spatial cognition, are likely neural substrates for the sense of direction. Here we studied the mechanism by which head direction cells are principally anchored to background visual cues [M.B. Zugaro et al. (2001) J. Neurosci., 21, RC154,1,5]. Anterodorsal thalamic head direction cells were recorded while the rat foraged on a small elevated platform in a 3-m diameter cylindrical enclosure. A large card was placed in the background, near the curtain, and a smaller card was placed in the foreground, near the platform. The cards were identically marked, proportionally dimensioned, subtended the same visual angles from the central vantage point and separated by 90°. The rat was then disoriented in darkness, the cards were rotated by 90° in opposite directions about the center and the rat was returned. Preferred directions followed either the background card, foreground card or midpoint between the two cards. In continuous lighting, preferred directions shifted to follow the background cue in most cases (30 of the 53 experiments, Batschelet V -test, P < 0.01). Stroboscopic illumination, which perturbs dynamic visual signals (e.g. motion parallax), blocked this selectivity. Head direction cells remained equally anchored to the background card, foreground card or configuration of the two cards (Watson test, P > 0.1). This shows that dynamic visual signals are critical in distinguishing typically more stable background cues which govern spatial neuronal responses and orientation behaviors. [source]


Perirhinal cortex neuronal activity related to long-term familiarity memory in the macaque

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2003
Christian Hölscher
Abstract Lesion studies suggest that the perirhinal cortex plays a role in object recognition memory. To analyse its role, the activity of single neurons in the perirhinal cortex was recorded in three rhesus monkeys (Macaca mulatta) performing a delayed matching-to-sample task with up to three intervening stimuli. A set of familiar visual stimuli was used. Some neurons had activity related to working memory, in that they responded more to the sample than to the match image within a trial, as shown previously. However, when a novel set of stimuli was introduced, the neuronal responses were on average only 47% of the magnitude of the responses to the familiar set of stimuli. Moreover, it was shown in eight different replications in three monkeys that the responses of the perirhinal cortex neurons gradually increased over hundreds of presentations of the new set of (initially novel) stimuli to become as large as with the already familiar stimuli. The mean number of 1.3-s presentations to induce this effect was 400 occurring over 7,13 days. These results show that perirhinal cortex neurons represent the very long-term familiarity of visual stimuli. A representation of the long-term familiarity of visual stimuli may be important for many aspects of social behaviour, and part of the impairment in temporal lobe amnesia may be related to the difficulty of building representations of the degree of familiarity of stimuli. [source]


Vagal motor neurons in rats respond to noxious and physiological gastrointestinal distention differentially

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2002
Xueguo Zhang
Abstract Low-pressure gastrointestinal distention modulates gastrointestinal function by a vago-vagal reflex. Noxious visceral distention, as seen in an obstruction of the gastrointestinal tract, causes abdominal pain, vomiting and affective changes. Using single neuron recording and intracellular injection techniques, we characterized the neuronal responses of neurons in the dorsal motor nucleus of the vagus (DMNV) to low- and high-pressure distentions of stomach and duodenum. Low-pressure gastric distention inhibited the mean activity of the DMNV neurons whereas high-pressure gastric distention excited many neurons. Of 47 DMNV neurons, low-pressure gastric distention inhibited 39, excited four, and did not affect four neurons. High-pressure gastric distention inhibited 26, excited 20, and left one unaffected. Thirteen of the 39 DMNV neurons inhibited by low-pressure distention of the stomach reversed their response to excitation during high-pressure gastric distention. Among 47 DMNV neurons, low-pressure duodenal distention inhibited 30, excited 10, and did not affect the remaining seven neurons. High-pressure distention of the duodenum inhibited 25 and excited 22 neurons. Eight DMNV neurons inhibited by low-pressure duodenal distention were excited in early response to high-pressure distention of the duodenum. High-pressure duodenal distention caused an early excitation and late inhibition in the mean activity of the DMNV neurons while low-pressure duodenal distention only produced late inhibition. These results suggest that different reflexes are present between physiological distention and noxious stimulation of gastrointestinal tract. [source]


Effects of cannabinoids on prefrontal neuronal responses to ventral tegmental area stimulation

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2001
Marco Pistis
Abstract Cannabinoids activate the firing of mesoprefrontocortical dopamine neurons and release dopamine in the prefrontal cortex. This study was undertaken with the aim of clarifying the interaction between cannabinoids and mesocortical system in the prefrontal cortex. The effect of ,9 -tetrahydrocannabinol (,9 -THC) and the synthetic CB1 agonist WIN55,212,2 (WIN) was studied by extracellular single unit recordings, in chloral hydrate anaesthetised rats, on the spontaneous activity of pyramidal neurons and on the inhibition produced on these neurons by the electrical stimulation of the ventral tegmental area (VTA). Intravenously administered ,9 -THC and WIN (1.0 and 0.5 mg/kg, respectively), increased the firing rate of pyramidal neurons projecting to the VTA. VTA stimulation produced a phasic inhibition (167 ± 6 ms) in 79% of prefrontal cortex pyramidal neurons. ,9 -THC and WIN reverted this inhibition in 73% and 100% of the neurons tested, respectively. The subsequent administration of the selective CB1 antagonist SR141716A (1 mg/kg) readily suppressed the effects of both cannabinoids and restored the inhibitory response to VTA stimulation. Moreover, when administered alone, SR141716A prolonged the inhibition in 55.6% of the neurons tested. The results indicate that stimulation of CB1 receptors by cannabinoids results in an enhanced excitability of prefrontal cortex pyramidal neurons as indexed by the suppression of the inhibitory effect of VTA stimulation and by the increase in firing rate of antidromically identified neurons projecting to the VTA. Furthermore, our results support the view that endogenous cannabinoids exert a negative control on dopamine activity in the prefrontal cortex. This study may be relevant in helping to understand the influence of cannabinoids on cognitive processes mediated by the prefrontal cortex. [source]


Activation of spinal cannabinoid 1 receptors inhibits C-fibre driven hyperexcitable neuronal responses and increases [35S]GTP,S binding in the dorsal horn of the spinal cord of noninflamed and inflamed rats

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2000
L. J. Drew
Abstract The analgesic potential of cannabinoid (CB) receptor agonists is of clinical interest. Improved understanding of the mechanisms of action of cannabinoids at sites involved in the modulation of acute and sustained inflammatory nociceptive transmission, such as the spinal cord, is essential. In vivo electrophysiology was used to compare the effect of the synthetic CB agonist, HU210, on acute transcutaneous electrical-evoked responses of dorsal horn neurons of noninflamed anaesthetized rats and anaesthetized rats with a peripheral carrageenin inflammation. CB receptor G-protein coupling in lumbar spinal cord sections of noninflamed and carrageenin-inflamed rats was studied with in vitro autoradiography of guanylyl 5,-[,-[35S]thio]triphosphate ([35S]GTP,S) binding. Spinal HU210 significantly inhibited the C-fibre-mediated late (300,800 ms) postdischarge response of dorsal horn neurons of noninflamed and carrageenin-inflamed rats; the CB1 receptor antagonist SR141716A blocked the effect of HU210. HU210 had limited effects on A-fibre-evoked dorsal horn neuronal responses of both groups of rats. HU210 significantly increased [35S]GTP,S binding in the dorsal horn of the spinal cord of both groups of rats compared with basal [35S]GTP,S binding; SR141716A blocked these effects. The predominant effect of spinal HU210, via CB1 receptor activation, was on the C-fibre driven postdischarge responses, a measure of neuronal hyperexcitability following repetitive C-fibre stimulation. Sustained, but not enhanced, antinociceptive effects of HU210 following carrageenin inflammation are reported; CB receptor G-protein coupling was not altered by inflammation. These results strengthen the body of evidence suggesting CB agonists may be an important novel analgesic approach for the treatment of sustained pain states. [source]


Theoretical Consequences of Fluctuating Versus Constant Liganding of Oestrogen Receptor-, in Neurones

JOURNAL OF NEUROENDOCRINOLOGY, Issue 6 2010
D. W. Pfaff
A theory is put forward that emphasises differences in neuronal responses to fluctuations in steroid hormone levels compared to constant hormone levels. We propose that neuronal functions that regulate gonadotrophin release from the anterior pituitary tend to be more sensitive to rapid increases in the levels of oestrogens than they are to constant oestrogen levels. By contrast, neurones that control certain behavioral functions are affected just as well by constant oestrogen levels as by positively accelerating levels of oestrogen. In addition to providing examples of data from recent experiments that examine actions of the long-term effects of oestrogen on mouse behaviour, we illustrate the behavioural effects of microinjections of adeno-associated viral vectors of small interfering RNA directed against the mRNA for oestrogen receptor-, (ER,). This manipulation provides for a long-term loss of ER, function in a neuranatomically specific manner. The theoretical distinction between temporal features of oestrogen sensitivity of neuroendocrine versus behavioural function is not absolute, but is intended to stimulate new experimentation that examines temporal features of oestrogen administration. [source]


Period 2 Gene Deletion Abolishes ,-Endorphin Neuronal Response to Ethanol

ALCOHOLISM, Issue 9 2010
Maria Agapito
Background:, Ethanol exposure during early life has been shown to permanently alter the circadian expression of clock regulatory genes and the ,-endorphin precursor proopiomelanocortin (POMC) gene in the hypothalamus. Ethanol also alters the stress- and immune-regulatory functions of ,-endorphin neurons in laboratory rodents. Our aim was to determine whether the circadian clock regulatory Per2 gene modulates the action of ethanol on ,-endorphin neurons in mice. Methods:,Per2 mutant (mPer2Brdml) and wild type (C57BL/6J) mice were used to determine the effect of Per2 mutation on ethanol-regulated ,-endorphin neuronal activity during neonatal period using an in vitro mediobasal hypothalamic (MBH) cell culture model and an in vivo milk formula feeding animal model. The ,-endorphin neuronal activity following acute and chronic ethanol treatments was evaluated by measuring the peptide released from cultured cells or peptide levels in the MBH tissues, using enzyme-linked immunosorbent assay (ELISA). Results:,Per2 mutant mice showed a higher basal level of ,-endorphin release from cultured MBH cells and a moderate increase in the peptide content in the MBH in comparison with control mice. However, unlike wild type mice, Per2 mutant mice showed no stimulatory or inhibitory ,-endorphin-secretory responses to acute and chronic ethanol challenges in vitro. Furthermore, Per2 mutant mice, but not wild type mice, failed to show the stimulatory and inhibitory responses of MBH ,-endorphin levels to acute and chronic ethanol challenges in vivo. Conclusions:, These results suggest for the first time that the Per2 gene may be critically involved in regulating ,-endorphin neuronal function. Furthermore, the data revealed an involvement of the Per2 gene in regulating ,-endorphin neuronal responses to ethanol. [source]


Effects of Ethanol on Extracellular Levels of Adenosine in the Basal Forebrain: An In Vivo Microdialysis Study in Freely Behaving Rats

ALCOHOLISM, Issue 5 2010
Rishi Sharma
Background:, Adenosine is implicated to play a pivotal role in mediating many neuronal responses to ethanol. While in vitro studies performed in cell culture have demonstrated that acute ethanol exposure increases extracellular adenosine levels, this effect has not been demonstrated, in vivo, in the brain. We performed an in vivo microdialysis study to examine the effects of local ethanol perfusion on extracellular levels of adenosine in the basal forebrain (BF). Methods:, Under sterile conditions and using a standard surgical protocol, adult male Sprague,Dawley rats were implanted with unilateral microdialysis guide cannula targeted toward the BF. Following postoperative recovery, the microdialysis probe was inserted. After allowing at least 12 to 16 hours for probe insertion recovery, the experiment was begun. Artificial cerebrospinal fluid (aCSF) was perfused (0.7 ,l/min) for 80 minutes, and 4 × 20-minute pre-ethanol baseline samples were collected. Subsequently, 30, 100, and 300 mM doses of ethanol were perfused. Each ethanol dose was perfused for 80 minutes, and 4 × 20-minute samples were collected. Finally, aCSF was perfused, and 4 × 20 postethanol samples were collected. Adenosine in the microdialysate was separated and measured with HPLC coupled with an UV detector. On completion, the animals were euthanized, brain removed and processed for histology. Results:, Local ethanol perfusion in the BF produced a significant increase in extracellular adenosine with the highest dose of 300 mM ethanol producing a 4-fold increase. Cresyl violet (Nissl) staining did not indicate any toxic damage in the area surrounding the probe tip. Choline acetyltransferase immunohistochemistry revealed that all microdialysis probe sites were localized in the BF. Conclusion:, Our study is the first to demonstrate that ethanol acts directly in the brain to increase extracellular adenosine. [source]


G protein-independent neuromodulatory action of adenosine on metabotropic glutamate signalling in mouse cerebellar Purkinje cells

THE JOURNAL OF PHYSIOLOGY, Issue 2 2007
Toshihide Tabata
Adenosine receptors (ARs) are G protein-coupled receptors (GPCRs) mediating the neuromodulatory actions of adenosine that influence emotional, cognitive, motor, and other functions in the central nervous system (CNS). Previous studies show complex formation between ARs and metabotropic glutamate receptors (mGluRs) in heterologous systems and close colocalization of ARs and mGluRs in several central neurons. Here we explored the possibility of intimate functional interplay between Gi/o protein-coupled A1 -subtype AR (A1R) and type-1 mGluR (mGluR1) naturally occurring in cerebellar Purkinje cells. Using a perforated-patch voltage-clamp technique, we found that both synthetic and endogenous agonists for A1R induced continuous depression of a mGluR1-coupled inward current. A1R agonists also depressed mGluR1-coupled intracellular Ca2+ mobilization monitored by fluorometry. A1R indeed mediated this depression because genetic depletion of A1R abolished it. Surprisingly, A1R agonist-induced depression persisted after blockade of Gi/o protein. The depression appeared to involve neither the cAMP-protein kinase A cascade downstream of the alpha subunits of Gi/o and Gs proteins, nor cytoplasmic Ca2+ that is suggested to be regulated by the beta-gamma subunit complex of Gi/o protein. Moreover, A1R did not appear to affect Gq protein which mediates the mGluR1-coupled responses. These findings suggest that A1R modulates mGluR1 signalling without the aid of the major G proteins. In this respect, the A1R-mediated depression of mGluR1 signalling shown here is clearly distinguished from the A1R-mediated neuronal responses described so far. These findings demonstrate a novel neuromodulatory action of adenosine in central neurons. [source]