Neuronal Firing Rate (neuronal + firing_rate)

Distribution by Scientific Domains


Selected Abstracts


The brain angiotensin IV/AT4 receptor system as a new target for the treatment of Alzheimer's disease

DRUG DEVELOPMENT RESEARCH, Issue 7 2009
John W. Wright
Abstract The brain renin-angiotensin system (RAS) regulates several physiologies including blood pressure, body sodium and water balance, cyclicity of reproductive hormones and related sexual behaviors, and the release of pituitary gland hormones. These physiologies are under the control of the angiotensin II (AngII)/AT1 receptor subtype system. The AngII/AT2 receptor subtype system is expressed during fetal development and is less abundant in the adult. This system appears to oppose growth responses facilitated by activation of the AT1 receptor. There is a growing list of nontraditional physiologies mediated by the most recently discovered angiotensin IV (AngIV)/AT4 receptor subtype system that include the regulation of blood flow, modulation of exploratory behaviors, involvement in stress responses and seizure, and a role in learning and memory acquisition. There is evidence to support an inhibitory influence by AngII, and a facilitory role by AngIV, on neuronal firing rate, long-term potentiation, and associative and spatial learning and memory. These findings suggest an important role for the RAS, and the AT4 receptor in particular, in normal cognitive processing and provide the stimulus for developing drugs that penetrate the blood-brain barrier to interact with this brain receptor in the treatment of dysfunctional memory. Drug Dev Res 70: 472,480, 2009. © 2009 Wiley-Liss, Inc. [source]


Competing Presynaptic and Postsynaptic Effects of Ethanol on Cerebellar Purkinje Neurons

ALCOHOLISM, Issue 8 2006
Zhen Ming
Background: Ethanol has actions on cerebellar Purkinje neurons that can result either in a net excitation or in inhibition of neuronal activity. The present study examines the interplay of presynaptic and postsynaptic mechanisms to determine the net effect of ethanol on the neuronal firing rate of cerebellar Purkinje neurons. Methods: Whole-cell voltage-clamp recording of miniature inhibitory postsynaptic currents (mIPSCs) from Purkinje neurons in cerebellar slices was used to examine the effect of ethanol on presynapticsynaptic release of , -aminobutyric acid (GABA) and glutamate. Extracellular recording was used to examine the net action of both presynaptic and postsynaptic effects of ethanol on the firing rate of Purkinje neurons. Results: Under whole-cell voltage clamp, the frequency of bicuculline-sensitive miniature postsynaptic currents (mIPSCs) was increased dose-dependently by 25, 50, and 100 mM ethanol without any change in amplitude or decay time. Despite this evidence of increased release of GABA by ethanol, application of 50 mM ethanol caused an increase in firing in some neurons and a decrease in firing in others with a nonrandom distribution. When both glutamatergic and GABAergic influences were removed by simultaneous application of 6-cyano-7-nitroquinoxaline-2,3-dione and picrotoxin, respectively, ethanol caused only an increase in firing rate. Conclusions: These data are consistent with a dual action of ethanol on cerebellar Purkinje neuron activity. Specifically, ethanol acts presynaptically to increase inhibition by release of GABA, while simultaneously acting postsynaptically to increase intrinsic excitatory drive. [source]


The mechanisms that underlie glucose sensing during hypoglycaemia in diabetes

DIABETIC MEDICINE, Issue 5 2008
R. McCrimmon
Abstract Hypoglycaemia is a frequent and greatly feared side-effect of insulin therapy, and a major obstacle to achieving near-normal glucose control. This review will focus on the more recent developments in our understanding of the mechanisms that underlie the sensing of hypoglycaemia in both non-diabetic and diabetic individuals, and how this mechanism becomes impaired over time. The research focus of my own laboratory and many others is directed by three principal questions. Where does the body sense a falling glucose? How does the body detect a falling glucose? And why does this mechanism fail in Type 1 diabetes? Hypoglycaemia is sensed by specialized neurons found in the brain and periphery, and of these the ventromedial hypothalamus appears to play a major role. Neurons that react to fluctuations in glucose use mechanisms very similar to those that operate in pancreatic B- and A-cells, in particular in their use of glucokinase and the KATP channel as key steps through which the metabolic signal is translated into altered neuronal firing rates. During hypoglycaemia, glucose-inhibited (GI) neurons may be regulated by the activity of AMP-activated protein kinase. This sensing mechanism is disturbed by recurrent hypoglycaemia, such that counter-regulatory defence responses are triggered at a lower glucose level. Why this should occur is not yet known, but it may involve increased metabolism or fuel delivery to glucose-sensing neurons or alterations in the mechanisms that regulate the stress response. [source]


Characterizing multiple independent behavioral correlates of cell firing in freely moving animals

HIPPOCAMPUS, Issue 2 2005
Neil Burgess
Abstract The heterogeneous sampling of behavioral states by freely moving animals hinders our ability to relate neuronal firing rates to behavioral variables by introducing dependencies between them. We specifically consider the animal's location and orientation, although our analyses may generalize to other behavioral variables, such as speed of movement. A maximum-likelihood approach is presented for producing estimates of the separate histograms relating firing rate to multiple independent causes. Examples show that the method can be used to avoid the artifactual behavioral correlates of place and head direction-cell firing produced by standard analyses; to characterize the independent influences of both location and orientation in a third cell type (Cacucci et al., 2004); and to demonstrate the location-independence of the directional firing of head-direction cells. © 2004 Wiley-Liss, Inc. [source]