Neuronal Elements (neuronal + element)

Distribution by Scientific Domains


Selected Abstracts


Immunization with a cannabinoid receptor type 1 peptide results in experimental allergic meningocerebellitis in the Lewis rat: A model for cell-mediated autoimmune neuropathology,

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2002
Margit G. Proescholdt
Abstract Neuronal elements are increasingly suggested as primary targets of an autoimmune attack in certain neurological and neuropsychiatric diseases. Type 1 cannabinoid receptors (CB1) were selected as autoimmune targets because they are predominantly expressed on neuronal surfaces in brain and display strikingly high protein levels in striatum, hippocampus, and cerebellum. Female Lewis rats were immunized with N-terminally acetylated peptides (50 or 400 ,g per rat) of the extracellular domains of the rat CB1 and killed at various time points. Subsequent evaluation using immunohistochemistry and in situ hybridization showed dense infiltration of immune cells exclusively within the cerebellum, peaking 12,16 days after immunization with the CB1 peptide containing amino acids 9,25. The infiltrates clustered in meninges and perivascular locations in molecular and granular cell layers and were also scattered throughout the CB1-rich neuropil. They consisted primarily of CD4+ and ED1+ cells, suggestive of cell-mediated autoimmune pathology. There were no inflammatory infiltrates elsewhere in the brain or spinal cord. The results show that neuronal elements, such as neuronal cell-surface receptors, may be recognized as antigenic targets in a cell-mediated autoimmune attack and, therefore, support the hypothesis of cell-mediated antineuronal autoimmune pathology in certain brain disorders. Published 2002 Wiley-Liss, Inc. [source]


Evidence for vesicular glutamate transporter synapses onto gonadotropin-releasing hormone and other neurons in the rat medial preoptic area

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2003
J. Kiss
Abstract The medial preoptic area is a key structure in the control of reproduction. Several data suggest that excitatory amino acids are involved in the regulation of this function and the major site of this action is the medial preoptic region. Data concerning the neuromorphology of the glutamatergic innervation of the medial preoptic area are fragmentary. The present investigations were focused on: (i) the morphology of the vesicular glutamate transporter 1 (VGluT1)- and vesicular glutamate transporter 2 (VGluT2)-immunoreactive nerve terminals, which are considered to be specific to presumed glutamatergic neuronal elements, in the medial preoptic area of rat; and (ii) the relationship between these glutamate transporter-positive endings and the gonadotropin-releasing hormone (GnRH) neurons in the region. Single- and double-label immunocytochemistry was used at the light and electron microscopic level. There was a weak to moderate density of VGluT1- and a moderate to intense density of VGluT2-immunoreactive elements in the medial preoptic area. Electron microscopy revealed that both VGluT1- and VGluT2-immunoreactive boutons made asymmetric type synaptic contacts with unlabelled neurons. VGluT2-labelled, but not VGluT1-labelled, axon terminals established asymmetric synaptic contacts on GnRH-immunostained neurons, mainly on their dendrites. The present findings are the first electron microscopic examinations on the glutamatergic innervation of the rat medial preoptic area. They provide direct neuromorphological evidence for the existence of direct glutamatergic innervation of GnRH and other neurons in the rat medial preoptic area. [source]


Neurocalcin-like immunoreactivity in embryonic stages of the gastropod molluscs Aplysia californica and Lymnaea stagnalis

INVERTEBRATE BIOLOGY, Issue 3 2001
Amanda J.G. Dickinson
Neurocalcin is a calcium-binding protein that has been localized in neural and non-neural tissues of vertebrates, the arthropod Drosophila melanogaster, and in juveniles and adults of the mollusc Aplysia californica. We examine the distribution of neurocalcin in pre-hatching stages of the molluscs A. californica and Lymnaea stagnalis to elucidate where this calcium-binding protein functions in early development, as well as to localize novel neuronal populations in early stages of ontogeny. Aplysia neurocalcin (ApNc)-like immunoreactivity was localized in shell-secreting cells in embryonic stages of both A. californica and L. stagnalis. In A. californica, central and anterior regions of the embryo were diffusely labeled, as were a few identifiable neurons in veliger stages, On the other hand, in L. stagnalis, ApNc-like immunoreactivity was clearly detected in cells and fibers in the same locations as neuronal elements that have been previously identified very early in development and throughout the embryonic period using techniques to localize specific transmitters and peptides. Furthermore, additional neurons are also identified with anti- ApNc in this species. Establishing the distribution of neurocalcin-like proteins in embryonic stages of these two molluscs provides the first step to understanding the role of such proteins during development. [source]


Regulation of Neurotransmitter Release by Metabotropic Glutamate Receptors

JOURNAL OF NEUROCHEMISTRY, Issue 3 2000
Jayne Cartmell
Abstract: The G protein-coupled metabotropic glutamate (mGlu) receptors are differentially localized at various synapses throughout the brain. Depending on the receptor subtype, they appear to be localized at presynaptic and/or postsynaptic sites, including glial as well as neuronal elements. The heterogeneous distribution of these receptors on glutamate and nonglutamate neurons/cells thus allows modulation of synaptic transmission by a number of different mechanisms. Electrophysiological studies have demonstrated that the activation of mGlu receptors can modulate the activity of Ca2+ or K+ channels, or interfere with release processes downstream of Ca2+ entry, and consequently regulate neuronal synaptic activity. Such changes evoked by mGlu receptors can ultimately regulate transmitter release at both glutamatergic and nonglutamatergic synapses. Increasing neurochemical evidence has emerged, obtained from in vitro and in vivo studies, showing modulation of the release of a variety of transmitters by mGlu receptors. This review addresses the neurochemical evidence for mGlu receptor-mediated regulation of neurotransmitters, such as excitatory and inhibitory amino acids, monoamines, and neuropeptides. [source]


Low sensitivity of retina to AMPA-induced calcification

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2003
Noemí Andrés
Abstract Glutamate is involved in most CNS neurodegenerative diseases. In particular, retinal diseases such as retinal ischemia, retinitis pigmentosa, and diabetic retinopathy are associated with an excessive synaptic concentration of this neurotransmitter. To gain more insight into retinal excitotoxicity, we carried out a dose,response study in adult rats using ,-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), a glutamate analogue. AMPA intraocular injections (between 0.27 and 10.8 nmol) caused no morphologic modification, but a 10.8 + 21 nmol double injection in a 10-day interval produced a lesion characterized by discrete neuronal loss, astroglial and microglial reactions, and calcium precipitation. Abundant calcium deposits similar to those present in rat and human brain excitotoxicity or hypoxia-ischemia neurodegeneration were detected by alizarin red staining within the retinal surface and the optic nerve. Glial reactivity, associated normally with astrocytes in the nerve fiber, was assessed in Müller cells. GABA immunoreactivity was detected not only in neuronal elements but also in Müller cells. In contrast to the high vulnerability of the brain to excitotoxin microinjection, AMPA-induced retinal neurodegeneration may provide a useful model of low central nervous system sensitivity to excitotoxicity. © 2003 Wiley-Liss, Inc. [source]


Differential expression of connexin 43 in the chick tangential vestibular nucleus

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2003
Anastas Popratiloff
Abstract The chick tangential nucleus is a major vestibular nucleus whose principal cells receive convergent inputs from primary vestibular and nonvestibular fibers and participate in the vestibular reflexes. During development, the principal cells gradually acquire the mature firing pattern in part by losing a specific potassium current around hatching (H). Here we focus on characterizing the expression of connexin 43 (Cx43), a gap junction protein found mainly between astrocytes in the mature brain. The astrocytic syncytium plays an important role in maintaining extracellular potassium ion balance in the brain. Accordingly, it is important to characterize the potential of this syncytium to communicate during the critical developmental age of hatching. Using fluorescence immunocytochemistry, we investigated whether Cx43 staining was concentrated in specific cellular compartments at H1 by applying well-known markers for astrocytes (glial fibrillary acidic protein; GFAP), oligodendrocytes (antimyelin), neurons (microtubule-associated protein 2), and synaptic terminals (synaptotagmin). GFAP-positive astrocytes and GFAP-negative nonneuronal cells around the principal cell bodies were labeled with Cx43, suggesting that Cx43 was expressed exclusively by nonneuronal cells near the neuronal elements. Next, the developmental pattern of expression of Cx43 was studied at embryonic day 16 (E16), H1, and H9. At E16, Cx43 was present weakly as random small clusters in the tangential nucleus, whereas, at H1, overall staining became localized, with increases in size, brightness, and number of immunostained clusters. Finally, at H9, Cx43 staining decreased, but cluster size and location remained unchanged. These results suggest that Cx43 is developmentally regulated with a peak at birth and is associated primarily with astrocytes and nonneuronal cells near the principal cell bodies. © 2003 Wiley-Liss, Inc. [source]


Immunization with a cannabinoid receptor type 1 peptide results in experimental allergic meningocerebellitis in the Lewis rat: A model for cell-mediated autoimmune neuropathology,

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2002
Margit G. Proescholdt
Abstract Neuronal elements are increasingly suggested as primary targets of an autoimmune attack in certain neurological and neuropsychiatric diseases. Type 1 cannabinoid receptors (CB1) were selected as autoimmune targets because they are predominantly expressed on neuronal surfaces in brain and display strikingly high protein levels in striatum, hippocampus, and cerebellum. Female Lewis rats were immunized with N-terminally acetylated peptides (50 or 400 ,g per rat) of the extracellular domains of the rat CB1 and killed at various time points. Subsequent evaluation using immunohistochemistry and in situ hybridization showed dense infiltration of immune cells exclusively within the cerebellum, peaking 12,16 days after immunization with the CB1 peptide containing amino acids 9,25. The infiltrates clustered in meninges and perivascular locations in molecular and granular cell layers and were also scattered throughout the CB1-rich neuropil. They consisted primarily of CD4+ and ED1+ cells, suggestive of cell-mediated autoimmune pathology. There were no inflammatory infiltrates elsewhere in the brain or spinal cord. The results show that neuronal elements, such as neuronal cell-surface receptors, may be recognized as antigenic targets in a cell-mediated autoimmune attack and, therefore, support the hypothesis of cell-mediated antineuronal autoimmune pathology in certain brain disorders. Published 2002 Wiley-Liss, Inc. [source]


Vasotocin and mesotocin in the brains of amphibians: State of the art

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 3 2001
Wilhelmus J.A.J. Smeets
Abstract Immunohistochemical studies during the last decade have revealed elaborate systems of vasotocinergic (AVT) and mesotocinergic (MST) neuronal elements in the brain of a variety of amphibians including anurans, urodeles, and gymnophionans. Apart from a well-developed hypothalamo-hypophysial system, the antibodies demonstrated the existence of extrahypothalamic AVT- and MST-immunoreactive cell groups as well as extensive extrahypothalamic networks of immunoreactive fibers. The wide distribution of AVT- and MST-immunoreactive fibers throughout the brains of amphibians suggests that the two neuropeptidergic systems are involved not only in hypothalamo-hypophysial interactions, but also in a variety of other brain functions. Moreover, there is now evidence that sex-related differences occur in amphibians as previously shown for amniotes. It should be noted, however, that substantial variation occurs in the relative densities of AVT- and MST-immunoreactive fibers and number of cells between species, even within a single order of amphibians. Similar observations have been made in other classes of vertebrates and prompt us, therefore, to critically evaluate conclusions with respect to specific functions of AVT and MST in the central nervous system of vertebrates. Microsc. Res. Tech. 54:125,136, 2001. © 2001 Wiley-Liss, Inc. [source]


Immunodetection of Cocaine- and Amphetamine-Regulated Transcript in the Rumen, Reticulum, Omasum and Abomasum of the Sheep

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 1 2009
M. B. Arciszewski
Summary Enteric nerves harbour a wide array of neuropeptides playing a key role in the regulation of gastrointestinal tract functions. In this study, the distribution patterns of cocaine- and amphetamine-regulated transcript-immunoreactive (CART-IR) nerve fibres as well as the percentages of CART-positive enteric neurons were immunohistochemically assessed in the rumen, reticulum, omasum and abomasum of the sheep. Double staining were applied, to elucidate whether neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), substance P (SP), somatostatin or serotonin co-exist in CART-IR gastric structures. In the rumen, reticulum, omasum and abomasum, a majority of myenteric neurons identified by immunoreactivity to Hu C/D were CART-positive (47.1 ± 3.6%, 45.1 ± 3.0%, 41.6 ± 2.6% and 40.9 ± 2.9% respectively). The smooth musculature of the forestomachs as well as abomasum was innervated with numerous CART-IR nerve fibres. Blood vessels-associated CART-positive nerve terminals were identified in the submucosa of the reticulum only. Lamina muscularis mucosae of the omasum and abomasum was moderately innervated with CART-IR nerve terminals. In the abomasum sparse CART-IR nerve fibres were seen between mucosal glands. A small population of endocrine cells of the abomasum also exhibited the presence of CART. All neuronal elements as well as endocrine cells IR to CART were negative to somatostatin and/or serotonin. No immunoreactivity to VIP, NPY and/or SP was found in myenteric ganglia-projecting CART-positive nerve fibres. The co-localization of CART with VIP, NPY and/or SP was regularly observed in myenteric neurons as well as the smooth muscle layer- and lamina muscularis mucosae-projecting nerve fibres. CART-IR nerve terminals located between mucosal glands of the abomasum frequently co-stored VIP, NPY and/or SP. Although the exact function of CART in the ovine forestomachs/stomach has to be elucidated, several potential functions (like enteric nerves protection) have been suggested. [source]


Regional Analysis of the Ependyma of the Third Ventricle of Rat by Light and Electron Microscopy

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 1 2008
T. C. Mathew
Summary Ependymal lining of cerebral ventricles lies at the interface between the ventricular cavities and the brain parenchyma. Ependymal cells are involved in various functions within the brain and play a major role in the production of the chemical principals of the cerebrospinal fluid. Histological studies on the regional variation of the third ventricular ependyma and the subependyma of adult rats were carried out by light and electron microscopic methods. For light microscopic analysis, methacrylate sections were used. In addition to the routine haematoxylin and eosin (H and E) staining for histological studies, the sections were stained with toluidine blue, cresyl violet and periodic acid Schiff's reagent (PAS). A regional analysis of the ependyma of the third ventricle showed that in most regions the ependyma was monolayered. The sidewalls and floor of the ventral portion of the third ventricle showed a multilayered ependyma. For descriptive purposes at the light microscopic level, the ependymal cells were classified, based on the cell shape (flat, cuboidal or columnar), presence or absence of cilia and the number of cytoplasmic granules present in the cells. Studies of transmission electron microscope have shown that these granules represent the cell organelles of the ependyma. The subependyma also showed a regional morphological variation, and, in most instances, contained glial and neuronal elements. In regions of specific brain nuclei, neurons were the major cell type of the subependyma. PAS staining did not show any positive granules in the ependymal cytosol. Characteristic supraependymal elements were present at the ependymal surface of the third ventricle. [source]