Neurogenic Atrophy (neurogenic + atrophy)

Distribution by Scientific Domains


Selected Abstracts


Diagnostic Protein Expression in Human Muscle Biopsies

BRAIN PATHOLOGY, Issue 2 2000
Antje Bornemann
Using immunohistochemistry in diagnosing neuromuscular diseases is meant to enhance the diagnostic yield in two ways. The first application aims at visualizing molecules which are developmentally, neurally, and/or immunologically regulated and not expressed by normal muscle. They are upregulated in pathological conditions and may help assign a given muscular biopsy to one of the main diagnostic entities (muscular dystrophies, inflammatory myopathy, neurogenic atrophy). In the past, muscle-specific molecules with a defined expression pattern during fetal myogenesis served as antigens, with the rationale that the developmental program was switched on in new fibers. Recently, myofibers in diseased muscle are thought of as targets of stimuli which are released by macrophages in muscular dystrophy, by lymphocytes in inflammatory myopathies, or by a lesioned peripheral nerve in neurogenic atrophies. This has somewhat blurred the borders between the diagnostic groups, for certain molecules, e.g. cytokines, may be upregulated after experimental necrotization, denervation, and also in inflammatory myopathies. In the second part of this review we summarise the experiences of a Centre in the North of England that specialises in the diagnosis and clinical support of patients with muscular dystrophy. Emphasis is placed on the use of protein expression to guide mutation analysis, particularly in the limb-girdle muscular dystrophies (a group of diseases that are very difficult to differentiate on clinical grounds alone). We confirm that genetic analysis is essential to corroborate the results of protein analysis in certain conditions (particularly in calpainopathy). However, we conclude that analysing biopsies for abnormal protein expression is very useful in aiding the decision between alternative diagnoses. [source]


Morphometric analysis of canine skeletal muscles following experimental callus distraction according to the ilizarov method

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 4 2000
Bernd Fink
Muscle fiber diameter and fiber-type distribution were analyzed during callus distraction. The right tibia in 24 beagles was lengthened 2.5 cm by callus distraction after osteotomy and application of a ring fixator. Distraction was started at the fifth postoperative day, at a rate of two times for 0.5 mm per day. Twelve dogs that underwent limb-lengthening and three dogs in the control group that did not undergo limb-lengthening were killed at the end of the 25-day distraction phase (group A). The remaining dogs (12 that underwent limb-lengthening and three that did not) were killed after an additional consolidation period of 25 days (group B). The tibialis anterior, extensor digitorum longus, peroneus longus, and gastrocnemius muscles were removed from the right limb (which had undergone distraction) and the left control side of each animal. Crosscut cryostat sections were stained by adenosine triphosphatase at pH 4.3 and 9.4 to determine the size and distribution of types I and II fibers. Morphometric analysis of the muscle fibers was performed by a computer-assisted two-point technique. On the lengthened side, the muscles revealed marked atrophy affecting predominantly type-II fiber in the dogs in group A and affecting both fiber types in dogs in group B. Fiber density increased in both groups. In addition, fiber-type grouping indicative of reinnervation was obvious in group B. Fiber-type distribution in the dogs in group B showed a shift toward type I in the tibialis anterior (p = 0.043) and extensor digitorum longus (p = 0.034) muscles and a shift toward type II in the gastrocnemius (p = 0.038). The data show that tension-stress during tibial lengthening leads to atrophy of type-II fiber, reflecting disuse of muscle fiber in the distraction period as well as neurogenic atrophy followed by the reinnervation processes. Furthermore, the data are consistent with the occurrence of histoneogenesis during limb-lengthening resulting in an increase in fiber density. [source]


Muscle biopsy substantiates long-term MRI alterations one year after a single dose of botulinum toxin injected into the lateral gastrocnemius muscle of healthy volunteers,

MOVEMENT DISORDERS, Issue 10 2009
A. Sebastian Schroeder MD
Abstract Despite numerous clinical and experimental studies on botulinum toxin type A (BoNT/A), long-term alterations of muscle texture and fine structure following BoNT/A treatment have thus far not been studied in normal human skeletal muscle. After obtaining institutional review board approval, we performed a prospective, placebo-controlled, double-blinded follow-up study on two healthy adults using magnetic resonance imaging (MRI) and muscle biopsy to visualize long-term alterations after a single BoNT/A injection into the lateral head of the gastrocnemius muscle. MRI disclosed a high-signal-intensity pattern in short tau inversion recovery sequences, and a reduction of the cross-sectional area in the BoNT/A-injected, but not in the saline-injected contralateral control muscle (at 6 to 9 months in volunteer A: 73%, in B: 62%; at 12 months in A: 88%, and in B: 78%). Enzyme histochemistry, 12 months after injection, confirmed neurogenic atrophy of muscle fibers only in the BoNT/A-injected muscle. Electron microscopy revealed additional degenerative changes at the neuromuscular junction. The data confirm that MRI is a suitable tool to monitor the long-term effect of BoNT/A on skeletal muscle. Neurogenic muscle atrophy following a single BoNT/A injection should be taken into consideration when repeated BoNT/A injections into the same muscles are proposed. 2009 Movement Disorder Society [source]


Constitutive activation of MAPK cascade in acute quadriplegic myopathy

ANNALS OF NEUROLOGY, Issue 2 2004
Simone Di Giovanni MD
Acute quadriplegic myopathy (AQM; also called "critical illness myopathy") shows acute muscle wasting and weakness and is experienced by some patients with severe systemic illness, often associated with administration of corticosteroids and/or neuroblocking agents. Key aspects of AQM include muscle atrophy and myofilament loss. Although these features are shared with neurogenic atrophy, myogenic atrophy in AQM appears mechanistically distinct from neurogenic atrophy. Using muscle biopsies from AQM, neurogenic atrophy, and normal controls, we show that both myogenic and neurogenic atrophy share induction of myofiber-specific ubiquitin/proteosome pathways (eg, atrogin-1). However, AQM patient muscle showed a specific strong induction of transforming growth factor (TGF),,/MAPK pathways. Atrophic AQM myofibers showed coexpression of TGF-, receptors, p38 MAPK, c-jun, and c-myc, including phosphorylated active forms, and these same fibers showed apoptotic features. Our data suggest a model of AQM pathogenesis in which stress stimuli (sepsis, corticosteroids, pH imbalance, osmotic imbalance) converge on the TGF-, pathway in myofibers. The acute stimulation of the TGF-,/MAPK pathway, coupled with the inactivity-induced atrogin-1/proteosome pathway, leads to the acute muscle loss seen in AQM patients. Ann Neurol 2004 [source]


Diagnostic Protein Expression in Human Muscle Biopsies

BRAIN PATHOLOGY, Issue 2 2000
Antje Bornemann
Using immunohistochemistry in diagnosing neuromuscular diseases is meant to enhance the diagnostic yield in two ways. The first application aims at visualizing molecules which are developmentally, neurally, and/or immunologically regulated and not expressed by normal muscle. They are upregulated in pathological conditions and may help assign a given muscular biopsy to one of the main diagnostic entities (muscular dystrophies, inflammatory myopathy, neurogenic atrophy). In the past, muscle-specific molecules with a defined expression pattern during fetal myogenesis served as antigens, with the rationale that the developmental program was switched on in new fibers. Recently, myofibers in diseased muscle are thought of as targets of stimuli which are released by macrophages in muscular dystrophy, by lymphocytes in inflammatory myopathies, or by a lesioned peripheral nerve in neurogenic atrophies. This has somewhat blurred the borders between the diagnostic groups, for certain molecules, e.g. cytokines, may be upregulated after experimental necrotization, denervation, and also in inflammatory myopathies. In the second part of this review we summarise the experiences of a Centre in the North of England that specialises in the diagnosis and clinical support of patients with muscular dystrophy. Emphasis is placed on the use of protein expression to guide mutation analysis, particularly in the limb-girdle muscular dystrophies (a group of diseases that are very difficult to differentiate on clinical grounds alone). We confirm that genetic analysis is essential to corroborate the results of protein analysis in certain conditions (particularly in calpainopathy). However, we conclude that analysing biopsies for abnormal protein expression is very useful in aiding the decision between alternative diagnoses. [source]