Nerve Fascicles (nerve + fascicle)

Distribution by Scientific Domains


Selected Abstracts


Striated muscle and nerve fascicle distribution in the female raturethral sphincter

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 2 2007
Ronald J. Kim
Abstract The anatomical basis for urinary continence depends on a thorough understanding of the tissues in the urethra. The objective of this study was to evaluate the morphology and neuroanatomy of urethral striated muscle, called the rhabdosphincter or external urethral sphincter, in normal female rats. Urethras from 12 female rats were dissected from the bladder, fixed, embedded in paraffin or epon, and sectioned every 1 mm. Striated muscle content was taken as the ratio of the striated muscle area to net urethral area. Nerve fascicles containing myelinated axons near the rhabdosphincter were counted and mapped. Both striated muscle content and number of nerve fascicles peak in the proximal third of the urethra, with a secondary peak at the distal end of the urethra. This secondary peak may correspond to an analog of the combined compressor urethrae/urethrovaginal sphincter located in the distal urethra in human. The rhabdosphincter has a variable distribution along the length of the urethra. In the middle and distal thirds of the urethra, the dorsal striated muscle fibers between the urethra and vagina become more sparse. The majority of nerve fascicles are contained in the lateral quadrants of the urethra, similar to the lateral distribution of somatic nerves in humans. In conclusion, this study demonstrates the normal distribution of the striated musculature and neuroanatomy in the urethra, with similarities to the human. It thus supports and extends the usefulness of the rat as an experimental model for studying urinary incontinence. Anat Rec 290:145,154, 2007. 2007 Wiley-Liss, Inc. [source]


Early structural effects of oestrogen on pudendal nerve regeneration in the rat

BJU INTERNATIONAL, Issue 6 2004
D.D. Kane
OBJECTIVE To determine the early effects of oestrogen on the ultrastructure of the pudendal nerve and distal nerve fascicles near the external urethra sphincter (EUS) after a pudendal nerve crush injury. The pudendal nerve is one of the pelvic floor tissues injured during vaginal delivery, possibly contributing to the development of stress urinary incontinence (SUI) in women, the symptoms of which often do not appear until menopause, implicating hormonal factors. MATERIALS AND METHODS Twenty-seven virgin female Sprague-Dawley rats were anaesthetized and underwent ovariectomy. Three days later, they had one of four procedures: bilateral pudendal nerve crush plus implant of a subcutaneous oestrogen-containing capsule (NC+E); nerve crush plus implant of a sham saline-containing capsule (NC+S); no nerve crush with an oestrogen capsule; or no nerve crush with a sham capsule. After 2 weeks the pudendal nerves and urethral tissues were prepared for light and electron microscopy. The number of axons, myelin figures and endoneurial nuclei in the pudendal nerve segment distal to the lesion were counted. Nerve fascicles near the EUS were also counted and categorized as normal or showing signs of degeneration and/or regeneration. The location of each nerve fascicle was specified as either ventral or dorsal. RESULTS As there were no significant differences between the two control groups they were combined to form a single control group. In the distal pudendal nerve there were significantly fewer myelinated axons and large myelinated axons in the NC+E and NC+S groups than in the control group. There were three times as many large unmyelinated axons in the NC+E group than in either the NC+S or control groups (P < 0.05). There were only half as many nerve fascicles near the ventral side of the EUS in the NC+S group than in both the control and NC+E groups (P < 0.05). CONCLUSION Oestrogen appears to affect large unmyelinated axons in both the injured pudendal nerve and at the denervated EUS target. After pudendal nerve crush, nerve fascicles with evidence of degeneration or regeneration near the EUS appear to be spared with oestrogen treatment, particularly in the ventral region. These observations may reflect the early stages of a neuroregenerative effect of oestrogen. Additional studies are needed to confirm these results at later periods and with functional methods. [source]


A subpopulation of nervus terminalis neurons projects to the olfactory mucosa in Xenopus laevis

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2001
Joseph M. Koza
Abstract Biocytin application to the normal or zinc sulfate-treated nasal cavity of Xenopus laevis was used to trace retrogradely neurons associated with the terminal nerve (TN). Immunocytochemistry was conducted to identify the relationship of gonadotropin-releasing hormone-immunoreactive (GnRH-ir) TN neurons with biocytin-labeled neurons. Neurons that accumulated biocytin were located in olfactory nerve fascicles close to the olfactory mucosa lining the caudal, medial, and rostral walls of the principal cavity. GnRH-ir fibers were observed only in the olfactory nerve fascicle projecting to the rostral edge of the principal cavity. In addition, GnRH-ir fibers did not contact biocytin-labeled TN neurons. We hypothesize that these two classes of neurons represent separate components of the TN. J. Neurosci. Res. 66:8,15, 2001. 2001 Wiley-Liss, Inc. [source]


Lipomatosis of the sciatic nerve: Report of a case and review of the literature

MICROSURGERY, Issue 1 2009
Emmanouil M. Fandridis M.D.
We report a case of lipomatosis of the sciatic nerve, also known as lipofibromatous hamartoma. A male, 26-year-old, presented with gait impairment, leg pain, and foot drop compatible with sciatic nerve's compression. The preoperative magnetic resonance imaging (MRI) revealed diffuse thickening of the proximal third of the sciatic nerve with adipose tissue interspersed among the nerve fascicles. Internal neurolysis was performed with microsurgical techniques under high magnification. The patient was followed up for a period of 34 months. He significantly recovered, and there was no clinical recurrence of the tumor. 2008 Wiley-Liss, Inc. Microsurgery, 2009. [source]


Striated muscle and nerve fascicle distribution in the female raturethral sphincter

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 2 2007
Ronald J. Kim
Abstract The anatomical basis for urinary continence depends on a thorough understanding of the tissues in the urethra. The objective of this study was to evaluate the morphology and neuroanatomy of urethral striated muscle, called the rhabdosphincter or external urethral sphincter, in normal female rats. Urethras from 12 female rats were dissected from the bladder, fixed, embedded in paraffin or epon, and sectioned every 1 mm. Striated muscle content was taken as the ratio of the striated muscle area to net urethral area. Nerve fascicles containing myelinated axons near the rhabdosphincter were counted and mapped. Both striated muscle content and number of nerve fascicles peak in the proximal third of the urethra, with a secondary peak at the distal end of the urethra. This secondary peak may correspond to an analog of the combined compressor urethrae/urethrovaginal sphincter located in the distal urethra in human. The rhabdosphincter has a variable distribution along the length of the urethra. In the middle and distal thirds of the urethra, the dorsal striated muscle fibers between the urethra and vagina become more sparse. The majority of nerve fascicles are contained in the lateral quadrants of the urethra, similar to the lateral distribution of somatic nerves in humans. In conclusion, this study demonstrates the normal distribution of the striated musculature and neuroanatomy in the urethra, with similarities to the human. It thus supports and extends the usefulness of the rat as an experimental model for studying urinary incontinence. Anat Rec 290:145,154, 2007. 2007 Wiley-Liss, Inc. [source]


Early structural effects of oestrogen on pudendal nerve regeneration in the rat

BJU INTERNATIONAL, Issue 6 2004
D.D. Kane
OBJECTIVE To determine the early effects of oestrogen on the ultrastructure of the pudendal nerve and distal nerve fascicles near the external urethra sphincter (EUS) after a pudendal nerve crush injury. The pudendal nerve is one of the pelvic floor tissues injured during vaginal delivery, possibly contributing to the development of stress urinary incontinence (SUI) in women, the symptoms of which often do not appear until menopause, implicating hormonal factors. MATERIALS AND METHODS Twenty-seven virgin female Sprague-Dawley rats were anaesthetized and underwent ovariectomy. Three days later, they had one of four procedures: bilateral pudendal nerve crush plus implant of a subcutaneous oestrogen-containing capsule (NC+E); nerve crush plus implant of a sham saline-containing capsule (NC+S); no nerve crush with an oestrogen capsule; or no nerve crush with a sham capsule. After 2 weeks the pudendal nerves and urethral tissues were prepared for light and electron microscopy. The number of axons, myelin figures and endoneurial nuclei in the pudendal nerve segment distal to the lesion were counted. Nerve fascicles near the EUS were also counted and categorized as normal or showing signs of degeneration and/or regeneration. The location of each nerve fascicle was specified as either ventral or dorsal. RESULTS As there were no significant differences between the two control groups they were combined to form a single control group. In the distal pudendal nerve there were significantly fewer myelinated axons and large myelinated axons in the NC+E and NC+S groups than in the control group. There were three times as many large unmyelinated axons in the NC+E group than in either the NC+S or control groups (P < 0.05). There were only half as many nerve fascicles near the ventral side of the EUS in the NC+S group than in both the control and NC+E groups (P < 0.05). CONCLUSION Oestrogen appears to affect large unmyelinated axons in both the injured pudendal nerve and at the denervated EUS target. After pudendal nerve crush, nerve fascicles with evidence of degeneration or regeneration near the EUS appear to be spared with oestrogen treatment, particularly in the ventral region. These observations may reflect the early stages of a neuroregenerative effect of oestrogen. Additional studies are needed to confirm these results at later periods and with functional methods. [source]