Neocortical Slices (neocortical + slice)

Distribution by Scientific Domains

Selected Abstracts

Valproate Prevents Epileptiform Activity After Trauma in an In Vitro Model in Neocortical Slices

EPILEPSIA, Issue 12 2000
Article first published online: 30 JAN 200
First page of article [source]

Intracellular Calcium Increase in Epileptiform Activity: Modulation by Levetiracetam and Lamotrigine

EPILEPSIA, Issue 7 2004
Antonio Pisani
Summary:,Purpose: Alterations in neuronal calcium (Ca2+) homeostasis are believed to play an essential role in the generation and propagation of epileptiform events. Levetiracetam (LEV) and lamotrigine (LTG), novel antiepileptic drugs (AEDs), were tested on epileptiform events and the corresponding elevations in intracellular Ca2+ concentration ([Ca2+]i) recorded from rat neocortical slices. Methods: Electrophysiological recordings were performed from single pyramidal neurons from a slice preparation. Spontaneous epileptiform events consisting of long-lasting, repetitive paroxysmal depolarization shifts (PDSs) and interictal spike activity were induced by reducing the magnesium concentration from the solution and by adding bicuculline and 4-aminopyridine. Simultaneously, microfluorimetric measurements of [Ca2+]i were performed. Optical imaging with Ca2+ indicators revealed a close correlation between Ca2+ transients and epileptiform events. Results: Both LEV and LTG were able to reduce both amplitude and duration of PDSs, as well as the concomitant elevation in [Ca2+]i, in a dose-dependent fashion. Whole-cell patch-clamp recordings from isolated neocortical neurons revealed that LEV significantly reduced N-, and partially P/Q-type high-voltage-activated (HVA) Ca2+ currents, whereas sodium currents were unaffected. Interestingly, the inhibitory effects of LEV were mimicked and occluded by LTG or by a combination of ,-conotoxin GVIA and ,-agatoxin IVA, selective blockers of N- and P/Q-type HVA channels, respectively, suggesting a common site of action for these AEDs. Conclusions: These results demonstrate that large, transient elevations in neuronal [Ca2+]i correlate to epileptiform discharges. The antagonistic effects of LEV and LTG on [Ca2+]i overload might represent the basis for their anticonvulsant efficacy and could preserve neuronal viability. [source]

Neocortical Potassium Currents Are Enhanced by the Antiepileptic Drug Lamotrigine

EPILEPSIA, Issue 7 2002
Cristina Zona
Summary: ,Purpose: We used field-potential recordings in slices of rat cerebral cortex along with whole-cell patch recordings from rat neocortical cells in culture to test the hypothesis that the antiepileptic drug (AED) lamotrigine (LTG) modulates K+ -mediated, hyperpolarizing currents. Methods: Extracellular field-potential recordings were performed in neocortical slices obtained from Wistar rats aged 25,50 days. Rat neocortical neurons in culture were subjected to the whole-cell mode of voltage clamping under experimental conditions designed to study voltage-gated K+ currents. Results: In the in vitro slice preparation, LTG (100,400 ,M) reduced and/or abolished epileptiform discharges induced by 4-aminopyridine (4AP, 100 ,M; n = 10), at doses that were significantly higher than those required to affect epileptiform activity recorded in Mg2+ -free medium (n = 8). We also discovered that in cultured cortical cells, LTG (100,500 ,M; n = 13) increased a transient, 4AP-sensitive, outward current elicited by depolarizing commands in medium containing voltage-gated Ca2+ and Na+ channel antagonists. Moreover, we did not observe any change in a late, tetraethylammonium-sensitive outward current. Conclusions: Our data indicate that LTG, in addition to the well-known reduction of voltage-gated Na+ currents, potentiates 4AP-sensitive, K+ -mediated hyperpolarizing conductances in cortical neurons. This mechanism of action contributes to the anticonvulsant effects exerted by LTG in experimental models of epileptiform discharge, and presumably in clinical practice. [source]

Synchrony of spontaneous calcium activity in mouse neocortex before synaptogenesis

Jean-Claude Platel
Abstract Spontaneous calcium activity can be detected in embryonic mouse cortical slices as fluorescence intensity variations, in the presence of a fluorescent calcium indicator. Current methods to detect and quantify these variations depend heavily on experimenters whose judgement may interfere with measurement. In the present work, we developed new software called CalSignal for automatic detection and tracking of cellular bodies and quantification of spontaneous calcium activity on time-series of confocal fluorescence images. Analysis of 28 neocortical slices revealed that 21.0% of detected cells displayed peaks of fluorescence corresponding to spontaneous activity, with a mean frequency of one peak per 4 min. This activity was blocked in the absence of extracellular calcium but was not modified after depletion of calcium stores with thapsigargin or blockade of voltage-gated calcium channels with Ni2+. Further, statistical analysis of calcium activity revealed concomitant activation of distant cells in 24 slices, and the existence of a significant network of synchrony based on such coactivations in 17 slices out of 28. These networks enclosed 84.3% of active cells, scattered throughout the neocortical wall (mean distance between cellular bodies, 111.7 m). Finally, it was possible to identify specific cells which were synchronously active with more neighbouring cells than others. The identity of these nodal cells remains to be investigated to fully comprehend the role of spontaneous calcium activity, before synaptogenesis, in shaping cortical neurogenesis. [source]

Laminar variation in neuronal viability and trophic dependence in neocortical slices

Mary M. Niblock
Abstract Organotypic slices are used frequently in studies of central nervous system development and function because they provide excellent experimental access with significant preservation of cellular context and relationships. Within a slice, however, a variety of factors may cause individual classes of neurons to respond differently to the culture environment. Differences in deafferentation, cellular maturation, trophic dependence and ongoing naturally occurring cell death may produce changes in the neuronal population that are transparent to the experimenter but that could affect experimental results significantly. In this study, we examined the distribution and prevalence of cell death among neurons in each cortical layer in organotypic slices. In addition, we assessed the ability of several neurotrophic factors to ameliorate neuronal death in each cortical layer. Within the first 24 hr in culture, there was striking laminar variation in the extent of neuronal death in culture, which could not be accounted for by the pattern of programmed cell death in vivo. In addition, neurons in the six layers of the neocortex differed in the degree to which they could be rescued by neurotrophic factors. These data suggest that differential neuronal death and rescue are important considerations in studies utilizing organotypic slices and may represent particularly confounding variables in studies of effects of trophic factors in such preparations. J. Neurosci. Res. 65:455,462, 2001. 2001 Wiley-Liss, Inc. [source]