Natural Population Analyses (natural + population_analysis)

Distribution by Scientific Domains

Selected Abstracts

Ab initio study on N,N,,N, -triaminoguanidine

Pansy Iqbal
Abstract Electronic structure calculations and second-order delocalizations in N,N,,N,,-triaminoguanidine (TAG) have been studied by employing ab initio MO and density functional methods. There are total 10 rotational isomers on the potential energy (PE) surface of TAG. The effect of three amino groups substitution on guanidine (Gu) has been studied in terms of the primary and the secondary electron delocalizations in TAG by employing Natural Population Analysis (NPA). An increased electron delocalization is observed in protonated triaminoguanidine (TAGP) due to the three strong intramolecular hydrogen bonds and hence accounts for its extra stability. The increase in the electron delocalization upon protonation in TAG can be compared to that in guanidine. The absolute proton affinity (APA) of TAG is less than that of Gu. HOMA and NICS studies have been carried out to understand electron delocalization in TAGP. Copyright 2007 John Wiley & Sons, Ltd. [source]

Competitive coordination between lead and oligoelements with respect to some therapeutic heavy-metal chelators

C. Gourlaouen
Abstract The competitive complexation of Ca2+, Fe2+, Cu2+, Zn2+, and Pb2+ toward ethylene diamine tetraacetate (EDTA), dimercaprol and D -penicillamine, three liganding agents commonly used in chelation therapy against heavy metal, especially lead, poisonings is examined by means of B3LYP calculations, natural population analyses, and the topological analysis of the electron localization function. It is shown that Pb2+ can displace any of Ca2+, Fe2+, Cu2+, or Zn2+ chelated by any of dimercaprol or D -penicillamine, but can only displace Ca2+ if EDTA is concerned. The first two chelators thus appear as better entities than EDTA to be used in chelation therapy, where in vivo selective complexation is essential. Moreover, the comparison of the bonding characteristics of Pb2+ with those of the other cations allows deriving three features to be taken into account in designing new chelators expecting to have an increased selectivity toward this cation. 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008 [source]

Bonding and Bending in Zirconium(IV) and Hafnium(IV) Hydrazides

Heike Herrmann Dr.
Abstract Reaction of the dichloro complexes [M(N2TBSNpy)Cl2] (M=Zr: 1, Hf: 2; TBS: tBuMe2Si; py: pyridine) with one molar equivalent of LiNHNPh2 gave mixtures of the two diastereomeric chlorohydrazido(1,) complexes [M(N2TBSNpy)(NHNPh2)Cl] (M=Zr: 3,a,b, Hf: 4,a,b) in which the diphenylhydrazido(1,) ligand adopts a bent ,1 coordination. This mixture of isomers could be cleanly converted into the deep green diphenylhydrazido(2,) complexes [Zr(N2TBSNpy)(NNPh2)(py)] (5) and [Hf(N2TBSNpy)(NNPh2)(py)] (6), respectively, by dehydrohalogenation with lithium hexamethyldisilazide (LiHMDS) in the presence of one molar equivalent of pyridine. Both complexes contain a linearly coordinated hydrazinediide for which a DFT-based frontier orbital analysis established bonding through one , and two , orbitals. A high polarity of the MN bond was found, in accordance with the description of hydrazinediide(2,) acting as a six-electron donor ligand. The pyridine ligand in [M(N2TBSNpy)(NNPh2)(py)] (M=Zr: 5, Hf: 6) is substitutionally labile as established by line-shape analysis of the dynamic spectra (,G,=19,kcal,mol,1). A change in denticity of the hydrazido unit from ,1 to ,2 was studied by DFT methods. Both forms are calculated to be very close in energy and are only separated by shallow activation barriers, which supports the notion of a rapid ,1 to ,2 interconversion. This process is believed to happen early on in the NN scission in the presence of coupling reagents. Frontier orbital and natural population analyses suggest that a primarily charge-controlled nucleophilic attack at N, is unlikely whereas interaction with an electrophile could play an important role. This hypothesis was tested by the reaction of 5 and 6 with one molar equivalent of B(C6F5)3 to give [Zr(N2TBSNpy)(NNPh2){B(C6F5)3}] (7) and [Hf(N2TBSNpy)(NNPh2){B(C6F5)3}] (8). In these products, B(C6F5)3 becomes attached to the N, atom of the side-on bound hydrazinediide and there is an additional interaction of an ortho -F atom of a C6F5 ring with the metal centre. [source]

H-bond donor strength;

Abraham parameter;
A quantum chemical model is introduced to predict the H-bond donor strength of monofunctional organic compounds from their ground-state electronic properties. The model covers OH, NH, and CH as H-bond donor sites and was calibrated with experimental values for the Abraham H-bond donor strength parameter A using the ab initio and density functional theory levels HF/6-31G** and B3LYP/6-31G**. Starting with the Morokuma analysis of hydrogen bonding, the electrostatic (ES), polarizability (PL), and charge transfer (CT) components were quantified employing local molecular parameters. With hydrogen net atomic charges calculated from both natural population analysis and the ES potential scheme, the ES term turned out to provide only marginal contributions to the Abraham parameter A, except for weak hydrogen bonds associated with acidic CH sites. Accordingly, A is governed by PL and CT contributions. The PL component was characterized through a new measure of the local molecular hardness at hydrogen, ,(H), which in turn was quantified through empirically defined site-specific effective donor and acceptor energies, EEocc and EEvac. The latter parameter was also used to address the CT contribution to A. With an initial training set of 77 compounds, HF/6-31G** yielded a squared correlation coefficient, r2, of 0.91. Essentially identical statistics were achieved for a separate test set of 429 compounds and for the recalibrated model when using all 506 compounds. B3LYP/6-31G** yielded slightly inferior statistics. The discussion includes subset statistics for compounds containing OH, NH, and active CH sites and a nonlinear model extension with slightly improved statistics (r2 = 0.92). 2008 Wiley Periodicals, Inc. J Comput Chem 2009 [source]

Valence and extra-valence orbitals in main group and transition metal bonding

C. R. Landis
Abstract We address the issue first raised by Maseras and Morokuma with regard to the questionable treatment of empty p-orbitals in the algorithm for natural atomic/bond orbitals (NAOs, NBOs) and associated natural population analysis. We quantify this issue in terms of the numerical error (root-mean-square density deviation) resulting from the two alternative treatments of empty p-sets, leading to distinct NAOs, atomic charges, and idealized Lewis structural representations. Computational application of this criterion to a broad spectrum of main group and transition group species (employing both single- and multi-structure resonance models) reveals the interesting general pattern of (i) relatively insignificant differences for normal-valent species, where a single resonance structure is usually adequate, but (ii) clear superiority of the standard NAO algorithm for hypervalent species, where multi-resonance character is pronounced. These comparisons show how the divisive issue of "valence shell expansion" in transition metal bonding is deeply linked to competing conceptual models of hypervalency (viz., "p-orbital participation" in skeletal hybridization vs. 3c/4e resonance character). The results provide a quantitative measure of superiority both for the standard NAO evaluation of atomic charges as well as the general 3c/4e (A: B-C , A-B :C resonance) picture of main- and transition-group hypervalency. 2006 Wiley Periodicals, Inc. J Comput Chem, 2007 [source]